944 resultados para 3D object detection
Resumo:
This paper presents a video surveillance framework that robustly and efficiently detects abandoned objects in surveillance scenes. The framework is based on a novel threat assessment algorithm which combines the concept of ownership with automatic understanding of social relations in order to infer abandonment of objects. Implementation is achieved through development of a logic-based inference engine based on Prolog. Threat detection performance is conducted by testing against a range of datasets describing realistic situations and demonstrates a reduction in the number of false alarms generated. The proposed system represents the approach employed in the EU SUBITO project (Surveillance of Unattended Baggage and the Identification and Tracking of the Owner).
Resumo:
A novel mathematical framework inspired on Morse Theory for topological triangle characterization in 2D meshes is introduced that is useful for applications involving the creation of mesh models of objects whose geometry is not known a priori. The framework guarantees a precise control of topological changes introduced as a result of triangle insertion/removal operations and enables the definition of intuitive high-level operators for managing the mesh while keeping its topological integrity. An application is described in the implementation of an innovative approach for the detection of 2D objects from images that integrates the topological control enabled by geometric modeling with traditional image processing techniques. (C) 2008 Published by Elsevier B.V.
Resumo:
[EN]The human face provides useful information during interaction; therefore, any system integrating Vision- BasedHuman Computer Interaction requires fast and reliable face and facial feature detection. Different approaches have focused on this ability but only open source implementations have been extensively used by researchers. A good example is the Viola–Jones object detection framework that particularly in the context of facial processing has been frequently used.
Resumo:
Here, a novel and efficient strategy for moving object detection by non-parametric modeling on smart cameras is presented. Whereas the background is modeled using only color information, the foreground model combines color and spatial information. The application of a particle filter allows the update of the spatial information and provides a priori information about the areas to analyze in the following images, enabling an important reduction in the computational requirements and improving the segmentation results
Resumo:
This article presents a novel system and a control strategy for visual following of a 3D moving object by an Unmanned Aerial Vehicle UAV. The presented strategy is based only on the visual information given by an adaptive tracking method based on the color information, which jointly with the dynamics of a camera fixed to a rotary wind UAV are used to develop an Image-based visual servoing IBVS system. This system is focused on continuously following a 3D moving target object, maintaining it with a fixed distance and centered on the image plane. The algorithm is validated on real flights on outdoors scenarios, showing the robustness of the proposed systems against winds perturbations, illumination and weather changes among others. The obtained results indicate that the proposed algorithms is suitable for complex controls task, such object following and pursuit, flying in formation, as well as their use for indoor navigation
Resumo:
This paper describes the participation of DAEDALUS at ImageCLEF 2011 Plant Identification task. The task is evaluated as a supervised classification problem over 71 tree species from the French Mediterranean area used as class labels, based on visual content from scan, scan-like and natural photo images. Our approach to this task is to build a classifier based on the detection of keypoints from the images extracted using Lowe’s Scale Invariant Feature Transform (SIFT) algorithm. Although our overall classification score is very low as compared to other participant groups, the main conclusion that can be drawn is that SIFT keypoints seem to work significantly better for photos than for the other image types, so our approach may be a feasible strategy for the classification of this kind of visual content.
Resumo:
Automatic visual object counting and video surveillance have important applications for home and business environments, such as security and management of access points. However, in order to obtain a satisfactory performance these technologies need professional and expensive hardware, complex installations and setups, and the supervision of qualified workers. In this paper, an efficient visual detection and tracking framework is proposed for the tasks of object counting and surveillance, which meets the requirements of the consumer electronics: off-the-shelf equipment, easy installation and configuration, and unsupervised working conditions. This is accomplished by a novel Bayesian tracking model that can manage multimodal distributions without explicitly computing the association between tracked objects and detections. In addition, it is robust to erroneous, distorted and missing detections. The proposed algorithm is compared with a recent work, also focused on consumer electronics, proving its superior performance.
Resumo:
In this paper we present an adaptive multi-camera system for real time object detection able to efficiently adjust the computational requirements of video processing blocks to the available processing power and the activity of the scene. The system is based on a two level adaptation strategy that works at local and at global level. Object detection is based on a Gaussian mixtures model background subtraction algorithm. Results show that the system can efficiently adapt the algorithm parameters without a significant loss in the detection accuracy.
Resumo:
Here, a novel and efficient moving object detection strategy by non-parametric modeling is presented. Whereas the foreground is modeled by combining color and spatial information, the background model is constructed exclusively with color information, thus resulting in a great reduction of the computational and memory requirements. The estimation of the background and foreground covariance matrices, allows us to obtain compact moving regions while the number of false detections is reduced. Additionally, the application of a tracking strategy provides a priori knowledge about the spatial position of the moving objects, which improves the performance of the Bayesian classifier
Resumo:
Along the recent years, several moving object detection strategies by non-parametric background-foreground modeling have been proposed. To combine both models and to obtain the probability of a pixel to belong to the foreground, these strategies make use of Bayesian classifiers. However, these classifiers do not allow to take advantage of additional prior information at different pixels. So, we propose a novel and efficient alternative Bayesian classifier that is suitable for this kind of strategies and that allows the use of whatever prior information. Additionally, we present an effective method to dynamically estimate prior probability from the result of a particle filter-based tracking strategy.
Resumo:
A spatial-color-based non-parametric background-foreground modeling strategy in a GPGPU by using CUDA is proposed. This strategy is suitable for augmented-reality applications, providing real-time high-quality results in a great variety of scenarios.
Resumo:
The last generation of consumer electronic devices is endowed with Augmented Reality (AR) tools. These tools require moving object detection strategies, which should be fast and efficient, to carry out higher level object analysis tasks. We propose a lightweight spatio-temporal-based non-parametric background-foreground modeling strategy in a General Purpose Graphics Processing Unit (GPGPU), which provides real-time high-quality results in a great variety of scenarios and is suitable for AR applications.
Resumo:
Electronic devices endowed with camera platforms require new and powerful machine vision applications, which commonly include moving object detection strategies. To obtain high-quality results, the most recent strategies estimate nonparametrically background and foreground models and combine them by means of a Bayesian classifier. However, typical classifiers are limited by the use of constant prior values and they do not allow the inclusion of additional spatiodependent prior information. In this Letter, we propose an alternative Bayesian classifier that, unlike those reported before, allows the use of additional prior information obtained from any source and depending on the spatial position of each pixel.