968 resultados para 3D local shape descriptor
Resumo:
Local features are used in many computer vision tasks including visual object categorization, content-based image retrieval and object recognition to mention a few. Local features are points, blobs or regions in images that are extracted using a local feature detector. To make use of extracted local features the localized interest points are described using a local feature descriptor. A descriptor histogram vector is a compact representation of an image and can be used for searching and matching images in databases. In this thesis the performance of local feature detectors and descriptors is evaluated for object class detection task. Features are extracted from image samples belonging to several object classes. Matching features are then searched using random image pairs of a same class. The goal of this thesis is to find out what are the best detector and descriptor methods for such task in terms of detector repeatability and descriptor matching rate.
Resumo:
La modélisation géométrique est importante autant en infographie qu'en ingénierie. Notre capacité à représenter l'information géométrique fixe les limites et la facilité avec laquelle on manipule les objets 3D. Une de ces représentations géométriques est le maillage volumique, formé de polyèdres assemblés de sorte à approcher une forme désirée. Certaines applications, tels que le placage de textures et le remaillage, ont avantage à déformer le maillage vers un domaine plus régulier pour faciliter le traitement. On dit qu'une déformation est \emph{quasi-conforme} si elle borne la distorsion. Cette thèse porte sur l’étude et le développement d'algorithmes de déformation quasi-conforme de maillages volumiques. Nous étudions ces types de déformations parce qu’elles offrent de bonnes propriétés de préservation de l’aspect local d’un solide et qu’elles ont été peu étudiées dans le contexte de l’informatique graphique, contrairement à leurs pendants 2D. Cette recherche tente de généraliser aux volumes des concepts bien maitrisés pour la déformation de surfaces. Premièrement, nous présentons une approche linéaire de la quasi-conformité. Nous développons une méthode déformant l’objet vers son domaine paramétrique par une méthode des moindres carrés linéaires. Cette méthode est simple d'implémentation et rapide d'exécution, mais n'est qu'une approximation de la quasi-conformité car elle ne borne pas la distorsion. Deuxièmement, nous remédions à ce problème par une approche non linéaire basée sur les positions des sommets. Nous développons une technique déformant le domaine paramétrique vers le solide par une méthode des moindres carrés non linéaires. La non-linéarité permet l’inclusion de contraintes garantissant l’injectivité de la déformation. De plus, la déformation du domaine paramétrique au lieu de l’objet lui-même permet l’utilisation de domaines plus généraux. Troisièmement, nous présentons une approche non linéaire basée sur les angles dièdres. Cette méthode définit la déformation du solide par les angles dièdres au lieu des positions des sommets du maillage. Ce changement de variables permet une expression naturelle des bornes de distorsion de la déformation. Nous présentons quelques applications de cette nouvelle approche dont la paramétrisation, l'interpolation, l'optimisation et la compression de maillages tétraédriques.
Resumo:
Réalisé en cotutelle avec Aix Marseille Université.
Resumo:
This paper describes a method for analyzing scoliosis trunk deformities using Independent Component Analysis (ICA). Our hypothesis is that ICA can capture the scoliosis deformities visible on the trunk. Unlike Principal Component Analysis (PCA), ICA gives local shape variation and assumes that the data distribution is not normal. 3D torso images of 56 subjects including 28 patients with adolescent idiopathic scoliosis and 28 healthy subjects are analyzed using ICA. First, we remark that the independent components capture the local scoliosis deformities as the shoulder variation, the scapula asymmetry and the waist deformation. Second, we note that the different scoliosis curve types are characterized by different combinations of specific independent components.
Resumo:
Improving the appearance of the trunk is an important goal of scoliosis surgical treatment, mainly in patients' eyes. Unfortunately, existing methods for assessing postoperative trunk appearance are rather subjective as they rely on a qualitative evaluation of the trunk shape. In this paper, an objective method is proposed to quantify the changes in trunk shape after surgery. Using a non-invasive optical system, the whole trunk surface is acquired and reconstructed in 3D. Trunk shape is described by two functional measurements spanning the trunk length: the lateral deviation and the axial rotation. To measure the pre and postoperative differences, a correction rate is computed for both measurements. On a cohort of 36 scoliosis patients with the same spinal curve type who underwent the same surgical approach, surgery achieved a very good correction of the lateral trunk deviation (median correction of 76%) and a poor to moderate correction of the back axial rotation (median correction of 19%). These results demonstrate that after surgery, patients are still confronted with residual trunk deformity, mainly a persisting hump on the back. That can be explained by the fact that current scoliosis assessment and treatment planning are based solely on radiographic measures of the spinal deformity and do not take trunk deformity into consideration. It is believed that with our novel quantitative trunk shape descriptor, clinicians and surgeons can now objectively assess trunk deformity and postoperative shape and propose new treatment strategies that could better address patients' concern about their appearance. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
The wealth of information available freely on the web and medical image databases poses a major problem for the end users: how to find the information needed? Content –Based Image Retrieval is the obvious solution.A standard called MPEG-7 was evolved to address the interoperability issues of content-based search.The work presented in this thesis mainly concentrates on developing new shape descriptors and a framework for content – based retrieval of scoliosis images.New region-based and contour based shape descriptor is developed based on orthogonal Legendre polymomials.A novel system for indexing and retrieval of digital spine radiographs with scoliosis is presented.
Resumo:
This paper presents a Robust Content Based Video Retrieval (CBVR) system. This system retrieves similar videos based on a local feature descriptor called SURF (Speeded Up Robust Feature). The higher dimensionality of SURF like feature descriptors causes huge storage consumption during indexing of video information. To achieve a dimensionality reduction on the SURF feature descriptor, this system employs a stochastic dimensionality reduction method and thus provides a model data for the videos. On retrieval, the model data of the test clip is classified to its similar videos using a minimum distance classifier. The performance of this system is evaluated using two different minimum distance classifiers during the retrieval stage. The experimental analyses performed on the system shows that the system has a retrieval performance of 78%. This system also analyses the performance efficiency of the low dimensional SURF descriptor.
Resumo:
L'increment de bases de dades que cada vegada contenen imatges més difícils i amb un nombre més elevat de categories, està forçant el desenvolupament de tècniques de representació d'imatges que siguin discriminatives quan es vol treballar amb múltiples classes i d'algorismes que siguin eficients en l'aprenentatge i classificació. Aquesta tesi explora el problema de classificar les imatges segons l'objecte que contenen quan es disposa d'un gran nombre de categories. Primerament s'investiga com un sistema híbrid format per un model generatiu i un model discriminatiu pot beneficiar la tasca de classificació d'imatges on el nivell d'anotació humà sigui mínim. Per aquesta tasca introduïm un nou vocabulari utilitzant una representació densa de descriptors color-SIFT, i desprès s'investiga com els diferents paràmetres afecten la classificació final. Tot seguit es proposa un mètode par tal d'incorporar informació espacial amb el sistema híbrid, mostrant que la informació de context es de gran ajuda per la classificació d'imatges. Desprès introduïm un nou descriptor de forma que representa la imatge segons la seva forma local i la seva forma espacial, tot junt amb un kernel que incorpora aquesta informació espacial en forma piramidal. La forma es representada per un vector compacte obtenint un descriptor molt adequat per ésser utilitzat amb algorismes d'aprenentatge amb kernels. Els experiments realitzats postren que aquesta informació de forma te uns resultats semblants (i a vegades millors) als descriptors basats en aparença. També s'investiga com diferents característiques es poden combinar per ésser utilitzades en la classificació d'imatges i es mostra com el descriptor de forma proposat juntament amb un descriptor d'aparença millora substancialment la classificació. Finalment es descriu un algoritme que detecta les regions d'interès automàticament durant l'entrenament i la classificació. Això proporciona un mètode per inhibir el fons de la imatge i afegeix invariança a la posició dels objectes dins les imatges. S'ensenya que la forma i l'aparença sobre aquesta regió d'interès i utilitzant els classificadors random forests millora la classificació i el temps computacional. Es comparen els postres resultats amb resultats de la literatura utilitzant les mateixes bases de dades que els autors Aixa com els mateixos protocols d'aprenentatge i classificació. Es veu com totes les innovacions introduïdes incrementen la classificació final de les imatges.
Resumo:
Observers generally fail to recover three-dimensional shape accurately from binocular disparity. Typically, depth is overestimated at near distances and underestimated at far distances [Johnston, E. B. (1991). Systematic distortions of shape from stereopsis. Vision Research, 31, 1351–1360]. A simple prediction from this is that disparity-defined objects should appear to expand in depth when moving towards the observer, and compress in depth when moving away. However, additional information is provided when an object moves from which 3D Euclidean shape can be recovered, be this through the addition of structure from motion information [Richards, W. (1985). Structure from stereo and motion. Journal of the Optical Society of America A, 2, 343–349], or the use of non-generic strategies [Todd, J. T., & Norman, J. F. (2003). The visual perception of 3-D shape from multiple cues: Are observers capable of perceiving metric structure? Perception and Psychophysics, 65, 31–47]. Here, we investigated shape constancy for objects moving in depth. We found that to be perceived as constant in shape, objects needed to contract in depth when moving toward the observer, and expand in depth when moving away, countering the effects of incorrect distance scaling (Johnston, 1991). This is a striking example of the failure of shape con- stancy, but one that is predicted if observers neither accurately estimate object distance in order to recover Euclidean shape, nor are able to base their responses on a simpler processing strategy.
Resumo:
For many tasks, such as retrieving a previously viewed object, an observer must form a representation of the world at one location and use it at another. A world-based 3D reconstruction of the scene built up from visual information would fulfil this requirement, something computer vision now achieves with great speed and accuracy. However, I argue that it is neither easy nor necessary for the brain to do this. I discuss biologically plausible alternatives, including the possibility of avoiding 3D coordinate frames such as ego-centric and world-based representations. For example, the distance, slant and local shape of surfaces dictate the propensity of visual features to move in the image with respect to one another as the observer’s perspective changes (through movement or binocular viewing). Such propensities can be stored without the need for 3D reference frames. The problem of representing a stable scene in the face of continual head and eye movements is an appropriate starting place for understanding the goal of 3D vision, more so, I argue, than the case of a static binocular observer.
Resumo:
This paper reports the novel application of digital curvature as a feature for morphological characterization and classification of landmark shapes. By inheriting several unique features of the continuous curvature, the digital curvature provides invariance to translations, rotations, local shape deformations, and is easily made tolerant to scaling. In addition, the bending energy, a global shape feature, can be directly estimated from the curvature values. The application of these features to analyse patterns of cranial morphological geographic differentiation in the rodent species Thrichomys apereoides has led to encouraging results, indicating a close correspondence between the geographical and morphological distributions. (C) 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this letter, a methodology is proposed for automatically (and locally) obtaining the shape factor c for the Gaussian basis functions, for each support domain, in order to increase numerical precision and mainly to avoid matrix inversion impossibilities. The concept of calibration function is introduced, which is used for obtaining c. The methodology developed was applied for a 2-D numerical experiment, which results are compared to analytical solution. This comparison revels that the results associated to the developed methodology are very close to the analytical solution for the entire bandwidth of the excitation pulse. The proposed methodology is called in this work Local Shape Factor Calibration Method (LSFCM).
Linear Versus Geometric Morphometric Approaches for the Analysis of Head Shape Dimorphism in Lizards
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In the present paper, we describe new robust methods of estimating cell shape and orientation in 3D from sections. The descriptors of 3D cell shape and orientation are based on volume tensors which are used to construct an ellipsoid, the Miles ellipsoid, approximating the average cell shape and orientation in 3D. The estimators of volume tensors are based on observations in several optical planes through sampled cells. This type of geometric sampling design is known as the optical rotator. The statistical behaviour of the estimator of the Miles ellipsoid is studied under a flexible model for 3D cell shape and orientation. In a simulation study, the lengths of the axes of the Miles ellipsoid can be estimated with CVs of about 2% if 100 cells are sampled. Finally, we illustrate the use of the developed methods in an example, involving neurons in the medial prefrontal cortex of rat.
Resumo:
PURPOSE: Ocular anatomy and radiation-associated toxicities provide unique challenges for external beam radiation therapy. For treatment planning, precise modeling of organs at risk and tumor volume are crucial. Development of a precise eye model and automatic adaptation of this model to patients' anatomy remain problematic because of organ shape variability. This work introduces the application of a 3-dimensional (3D) statistical shape model as a novel method for precise eye modeling for external beam radiation therapy of intraocular tumors. METHODS AND MATERIALS: Manual and automatic segmentations were compared for 17 patients, based on head computed tomography (CT) volume scans. A 3D statistical shape model of the cornea, lens, and sclera as well as of the optic disc position was developed. Furthermore, an active shape model was built to enable automatic fitting of the eye model to CT slice stacks. Cross-validation was performed based on leave-one-out tests for all training shapes by measuring dice coefficients and mean segmentation errors between automatic segmentation and manual segmentation by an expert. RESULTS: Cross-validation revealed a dice similarity of 95% ± 2% for the sclera and cornea and 91% ± 2% for the lens. Overall, mean segmentation error was found to be 0.3 ± 0.1 mm. Average segmentation time was 14 ± 2 s on a standard personal computer. CONCLUSIONS: Our results show that the solution presented outperforms state-of-the-art methods in terms of accuracy, reliability, and robustness. Moreover, the eye model shape as well as its variability is learned from a training set rather than by making shape assumptions (eg, as with the spherical or elliptical model). Therefore, the model appears to be capable of modeling nonspherically and nonelliptically shaped eyes.