993 resultados para 230201 Probability Theory
Resumo:
Stochastic models based on Markov birth processes are constructed to describe the process of invasion of a fly larva by entomopathogenic nematodes. Various forms for the birth (invasion) rates are proposed. These models are then fitted to data sets describing the observed numbers of nematodes that have invaded a fly larval after a fixed period of time. Non-linear birthrates are required to achieve good fits to these data, with their precise form leading to different patterns of invasion being identified for three populations of nematodes considered. One of these (Nemasys) showed the greatest propensity for invasion. This form of modelling may be useful more generally for analysing data that show variation which is different from that expected from a binomial distribution.
Resumo:
The present notes are intended to present a detailed review of the existing results in dissipative kinetic theory which make use of the contraction properties of two main families of probability metrics: optimal mass transport and Fourier-based metrics. The first part of the notes is devoted to a self-consistent summary and presentation of the properties of both probability metrics, including new aspects on the relationships between them and other metrics of wide use in probability theory. These results are of independent interest with potential use in other contexts in Partial Differential Equations and Probability Theory. The second part of the notes makes a different presentation of the asymptotic behavior of Inelastic Maxwell Models than the one presented in the literature and it shows a new example of application: particle's bath heating. We show how starting from the contraction properties in probability metrics, one can deduce the existence, uniqueness and asymptotic stability in classical spaces. A global strategy with this aim is set up and applied in two dissipative models.
Resumo:
We use basic probability theory and simple replicable electronic search experiments to evaluate some reported “myths” surrounding the origins and evolution of the QWERTY standard. The resulting evidence is strongly supportive of arguments put forward by Paul A. David (1985) and W. Brian Arthur (1989) that QWERTY was path dependent with its course of development strongly influenced by specific historical circumstances. The results also include the unexpected finding that QWERTY was as close to an optimal solution to a serious but transient problem as could be expected with the resources at the disposal of its designers in 1873.
Resumo:
This paper presents and discusses further aspects of the subjectivist interpretation of probability (also known as the 'personalist' view of probabilities) as initiated in earlier forensic and legal literature. It shows that operational devices to elicit subjective probabilities - in particular the so-called scoring rules - provide additional arguments in support of the standpoint according to which categorical claims of forensic individualisation do not follow from a formal analysis under that view of probability theory.
Resumo:
Bimodal dispersal probability distributions with characteristic distances differing by several orders of magnitude have been derived and favorably compared to observations by Nathan [Nature (London) 418, 409 (2002)]. For such bimodal kernels, we show that two-dimensional molecular dynamics computer simulations are unable to yield accurate front speeds. Analytically, the usual continuous-space random walks (CSRWs) are applied to two dimensions. We also introduce discrete-space random walks and use them to check the CSRW results (because of the inefficiency of the numerical simulations). The physical results reported are shown to predict front speeds high enough to possibly explain Reid's paradox of rapid tree migration. We also show that, for a time-ordered evolution equation, fronts are always slower in two dimensions than in one dimension and that this difference is important both for unimodal and for bimodal kernels
Resumo:
We generalize to arbitrary waiting-time distributions some results which were previously derived for discrete distributions. We show that for any two waiting-time distributions with the same mean delay time, that with higher dispersion will lead to a faster front. Experimental data on the speed of virus infections in a plaque are correctly explained by the theoretical predictions using a Gaussian delay-time distribution, which is more realistic for this system than the Dirac delta distribution considered previously [J. Fort and V. Méndez, Phys. Rev. Lett.89, 178101 (2002)]
Resumo:
The speed of traveling fronts for a two-dimensional model of a delayed reactiondispersal process is derived analytically and from simulations of molecular dynamics. We show that the one-dimensional (1D) and two-dimensional (2D) versions of a given kernel do not yield always the same speed. It is also shown that the speeds of time-delayed fronts may be higher than those predicted by the corresponding non-delayed models. This result is shown for systems with peaked dispersal kernels which lead to ballistic transport
Resumo:
Bimodal dispersal probability distributions with characteristic distances differing by several orders of magnitude have been derived and favorably compared to observations by Nathan [Nature (London) 418, 409 (2002)]. For such bimodal kernels, we show that two-dimensional molecular dynamics computer simulations are unable to yield accurate front speeds. Analytically, the usual continuous-space random walks (CSRWs) are applied to two dimensions. We also introduce discrete-space random walks and use them to check the CSRW results (because of the inefficiency of the numerical simulations). The physical results reported are shown to predict front speeds high enough to possibly explain Reid's paradox of rapid tree migration. We also show that, for a time-ordered evolution equation, fronts are always slower in two dimensions than in one dimension and that this difference is important both for unimodal and for bimodal kernels
Resumo:
In recent years, the econometrics literature has shown a growing interest in the study of partially identified models, in which the object of economic and statistical interest is a set rather than a point. The characterization of this set and the development of consistent estimators and inference procedures for it with desirable properties are the main goals of partial identification analysis. This review introduces the fundamental tools of the theory of random sets, which brings together elements of topology, convex geometry, and probability theory to develop a coherent mathematical framework to analyze random elements whose realizations are sets. It then elucidates how these tools have been fruitfully applied in econometrics to reach the goals of partial identification analysis.
Resumo:
In this work, we show how number theoretical problems can be fruitfully approached with the tools of statistical physics. We focus on g-Sidon sets, which describe sequences of integers whose pairwise sums are different, and propose a random decision problem which addresses the probability of a random set of k integers to be g-Sidon. First, we provide numerical evidence showing that there is a crossover between satisfiable and unsatisfiable phases which converts to an abrupt phase transition in a properly defined thermodynamic limit. Initially assuming independence, we then develop a mean-field theory for the g-Sidon decision problem. We further improve the mean-field theory, which is only qualitatively correct, by incorporating deviations from independence, yielding results in good quantitative agreement with the numerics for both finite systems and in the thermodynamic limit. Connections between the generalized birthday problem in probability theory, the number theory of Sidon sets and the properties of q-Potts models in condensed matter physics are briefly discussed
Resumo:
Bibliography: p. 98.
Resumo:
A címben említett három fogalom a közgazdasági elméletben központi szerepet foglal el. Ezek viszonya elsősorban a közgazdaságtudományi megismerés határait feszegeti. Mit tudunk a gazdasági döntésekről? Milyen információk alapján születnek a döntések? Lehet-e a gazdasági döntéseket „tudományos” alapra helyezni? A bizonytalanság kérdéséről az 1920-as években való megjelenése óta mindent elmondtak. Megvizsgálták a kérdést filozófiailag, matematikailag. Tárgyalták a kérdés számtalan elméleti és gyakorlati aspektusát. Akkor miért kell sokadszorra is foglalkozni a témával? A válasz igen egyszerű: azért, mert a kérdés minden szempontból ténylegesen alapvető, és mindenkor releváns. Úgy hírlik, hogy a római diadalmenetekben a győztes szekerén mindig volt egy rabszolga is, aki folyamatosan figyelmeztette a diadaltól megmámorosodott vezért, hogy ő is csak egy ember, ezt ne feledje el. A gazdasági döntéshozókat hasonló módon újra és újra figyelmeztetni kell arra, hogy a gazdasági döntések a bizonytalanság jegyében születnek. A gazdasági folyamatok megérthetőségének és kontrollálhatóságának van egy igen szoros korlátja. Ezt a korlátot a folyamatok inherens bizonytalansága adja. A gazdasági döntéshozók fülébe folyamatosan duruzsolni kell: ők is csak emberek, és ezért ismereteik igen korlátozottak. A „bátor” döntések során az eredmény bizonytalan, a tévedés azonban bizonyosra vehető. / === / In the article the author presents some remarks on the application of probability theory in financial decision making. From mathematical point of view the risk neutral measures used in finance are some version of separating hyperplanes used in optimization theory and in general equilibrium theory. Therefore they are just formally a probabilities. They interpretation as probabilities are misleading analogies leading to wrong decisions.
Resumo:
O Teorema Central do Limite e a Lei dos Grandes Números estão entre os mais importantes resultados da teoria da probabilidade. O primeiro deles busca condições sob as quais [fórmula] converge em distribuição para a distribuição normal com parâmetros 0 e 1, quando n tende ao infinito, onde Sn é a soma de n variáveis aleatórias independentes. Ao mesmo tempo, o segundo estabelece condições para que [fórmula] convirja a zero, ou equivalentemente, para que [fórmula] convirja para a esperança das variáveis aleatórias, caso elas sejam identicamente distribuídas. Em ambos os casos as sequências abordadas são do tipo [fórmula], onde [fórmula] e [fórmula] são constantes reais. Caracterizar os possíveis limites de tais sequências é um dos objetivos dessa dissertação, já que elas não convergem exclusivamente para uma variável aleatória degenerada ou com distribuição normal como na Lei dos Grandes Números e no Teorema Central do Limite, respectivamente. Assim, somos levados naturalmente ao estudo das distribuições infinitamente divisíveis e estáveis, e os respectivos teoremas limites, e este vem a ser o objetivo principal desta dissertação. Para as demonstrações dos teoremas utiliza-se como estratégia principal a aplicação do método de Lyapunov, o qual consiste na análise da convergência da sequência de funções características correspondentes às variáveis aleatórias. Nesse sentido, faremos também uma abordagem detalhada de tais funções neste trabalho.
Resumo:
The aim of the present study was to test a hypothetical model to examine if dispositional optimism exerts a moderating or a mediating effect between personality traits and quality of life, in Portuguese patients with chronic diseases. A sample of 540 patients was recruited from central hospitals in various districts of Portugal. All patients completed self-reported questionnaires assessing socio-demographic and clinical variables, personality, dispositional optimism, and quality of life. Structural equation modeling (SEM) was used to analyze the moderating and mediating effects. Results suggest that dispositional optimism exerts a mediator rather than a moderator role between personality traits and quality of life, suggesting that “the expectation that good things will happen” contributes to a better general well-being and better mental functioning.