965 resultados para 2-adic complexity
Resumo:
Genetic analysis of plant–pathogen interactions has demonstrated that resistance to infection is often determined by the interaction of dominant plant resistance (R) genes and dominant pathogen-encoded avirulence (Avr) genes. It was postulated that R genes encode receptors for Avr determinants. A large number of R genes and their cognate Avr genes have now been analyzed at the molecular level. R gene loci are extremely polymorphic, particularly in sequences encoding amino acids of the leucine-rich repeat motif. A major challenge is to determine how Avr perception by R proteins triggers the plant defense response. Mutational analysis has identified several genes required for the function of specific R proteins. Here we report the identification of Rcr3, a tomato gene required specifically for Cf-2-mediated resistance. We propose that Avr products interact with host proteins to promote disease, and that R proteins “guard” these host components and initiate Avr-dependent plant defense responses.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT
Resumo:
While Business Process Management (BPM) is an established discipline, the increased adoption of BPM technology in recent years has introduced new challenges. One challenge concerns dealing with process model complexity in order to improve the understanding of a process model by stakeholders and process analysts. Features for dealing with this complexity can be classified in two categories: 1) those that are solely concerned with the appearance of the model, and 2) those that in essence change the structure of the model. In this paper we focus on the former category and present a collection of patterns that generalize and conceptualize various existing features. The paper concludes with a detailed analysis of the degree of support of a number of state-of-the-art languages and language implementations for these patterns.
Resumo:
Raman spectroscopy has been used to characterise the antimonate mineral bahianite Al5Sb35+O14(OH)2 , a semi-precious gem stone. The mineral is characterised by an intense Raman band at 818 cm-1 assigned to Sb3O1413- stretching vibrations. Other lower intensity bands at 843 and 856 cm-1 are also assigned to this vibration and this concept suggests the non-equivalence of SbO units in the structure. Low intensity Raman bands at 669 and 682 cm-1 are probably assignable to the OSbO antisymmetric stretching vibrations. Raman bands at 1756, 1808 and 1929 cm-1 may be assigned to δ SbOH deformation modes, whilst Raman bands at 3462 and 3495 cm-1 are assigned to AlOH stretching vibrations. Complexity in the low wave number region is attributed to the composition of the mineral.
Resumo:
Within the current climate of unpredictability and constant change, young people at school are faced with a multitude of choices and contradictory influences. In this article, I argue that (re)presentations of young people in youth research need to reflect the complexity and multiplicity of their lives and changing priorities, and I attempt to (re)present a small group of young people in this particular milieu. I illustrate some of the competing influences in their lives, and I outline some specific strategies that are useful for (re)presenting these contextual worlds. The strategies I advocate disrupt the homogenous representations of ‘youth’ as a developmental phase and instead reflect the diverse spheres of influence which shape their subjectivities and practices.
Resumo:
While Business Process Management (BPM) is an established discipline, the increased adoption of BPM technology in recent years has introduced new challenges. One challenge concerns dealing with the ever-growing complexity of business process models. Mechanisms for dealing with this complexity can be classified into two categories: 1) those that are solely concerned with the visual representation of the model and 2) those that change its inner structure. While significant attention is paid to the latter category in the BPM literature, this paper focuses on the former category. It presents a collection of patterns that generalize and conceptualize various existing mechanisms to change the visual representation of a process model. Next, it provides a detailed analysis of the degree of support for these patterns in a number of state-of-the-art languages and tools. This paper concludes with the results of a usability evaluation of the patterns conducted with BPM practitioners.
Resumo:
The literature abounds with descriptions of failures in high-profile projects and a range of initiatives has been generated to enhance project management practice (e.g., Morris, 2006). Estimating from our own research, there are scores of other project failures that are unrecorded. Many of these failures can be explained using existing project management theory; poor risk management, inaccurate estimating, cultures of optimism dominating decision making, stakeholder mismanagement, inadequate timeframes, and so on. Nevertheless, in spite of extensive discussion and analysis of failures and attention to the presumed causes of failure, projects continue to fail in unexpected ways. In the 1990s, three U.S. state departments of motor vehicles (DMV) cancelled major projects due to time and cost overruns and inability to meet project goals (IT-Cortex, 2010). The California DMV failed to revitalize their drivers’ license and registration application process after spending $45 million. The Oregon DMV cancelled their five year, $50 million project to automate their manual, paper-based operation after three years when the estimates grew to $123 million; its duration stretched to eight years or more and the prototype was a complete failure. In 1997, the Washington state DMV cancelled their license application mitigation project because it would have been too big and obsolete by the time it was estimated to be finished. There are countless similar examples of projects that have been abandoned or that have not delivered the requirements.
Resumo:
Sample complexity results from computational learning theory, when applied to neural network learning for pattern classification problems, suggest that for good generalization performance the number of training examples should grow at least linearly with the number of adjustable parameters in the network. Results in this paper show that if a large neural network is used for a pattern classification problem and the learning algorithm finds a network with small weights that has small squared error on the training patterns, then the generalization performance depends on the size of the weights rather than the number of weights. For example, consider a two-layer feedforward network of sigmoid units, in which the sum of the magnitudes of the weights associated with each unit is bounded by A and the input dimension is n. We show that the misclassification probability is no more than a certain error estimate (that is related to squared error on the training set) plus A3 √((log n)/m) (ignoring log A and log m factors), where m is the number of training patterns. This may explain the generalization performance of neural networks, particularly when the number of training examples is considerably smaller than the number of weights. It also supports heuristics (such as weight decay and early stopping) that attempt to keep the weights small during training. The proof techniques appear to be useful for the analysis of other pattern classifiers: when the input domain is a totally bounded metric space, we use the same approach to give upper bounds on misclassification probability for classifiers with decision boundaries that are far from the training examples.
Resumo:
Purpose---The aim of this study is to identify complexity measures for building projects in the People’s Republic of China (PRC). Design/Methodology/Approach---A three-round of Delphi questionnaire survey was conducted to identify the key parameters that measure the degree of project complexity. A complexity index (CI) was developed based on the identified measures and their relative importance. Findings---Six key measures of project complexity have been identified, which include, namely (1) building structure & function; (2) construction method; (3) the urgency of the project schedule; (4) project size/scale; (5) geological condition; and (6) neighboring environment. Practical implications---These complexity measures help stakeholders assess degrees of project complexity and better manage the potential risks that might be induced to different levels of project complexity. Originality/Value---The findings provide insightful perspectives to define and understand project complexity. For stakeholders, understanding and addressing the complexity help to improve project planning and implementation.
Resumo:
The phosphate mineral brazilianite NaAl3(PO4)2(OH)4 is a semi precious jewel. There are almost no minerals apart from brazilianite which are used in jewellery. Vibrational spectroscopy was used to characterize the mol. structure of brazilianite. Brazilianite is composed of chains of edge-sharing Al-O octahedra linked by P-O tetrahedra, with Na located in cavities of the framework. An intense sharp Raman band at 1019 cm-1 is attributed to the PO43- sym. stretching mode. Raman bands at 973 and 988 cm-1 are assigned to the stretching vibrations of the HOPO33- units. The IR spectra compliment the Raman spectra but show greater complexity. Multiple Raman bands are obsd. in the PO43- and HOPO33- bending region. This observation implies that both phosphate and hydrogen phosphate units are involved in the structure. Raman OH stretching vibrations are found at 3249, 3417 and 3472 cm-1. These peaks show that the OH units are not equiv. in the brazilianite structure. Vibrational spectroscopy is useful for increasing the knowledge of the mol. structure of brazilianite.
Resumo:
This paper summarises some of the recent studies on various types of learning approaches that have utilised some form of Web 2.0 services in curriculum design to enhance learning. A generic implementation model of this integration will then be presented to illustrate the overall learning implementation process. Recently, the integration of Web 2.0 technologies into learning curriculum has begun to get a wide acceptance among teaching instructors across various higher learning institutions. This is evidenced by numerous studies which indicate the implementation of a range of Web 2.0 technologies into their learning design to improve learning delivery. Moreover, recent studies also have shown that the ability of current students to embrace Web 2.0 technologies is better than students using existing learning technology. Despite various attempts made by teachers in relation to the integration, researchers have noted a lack of integration standard to help in curriculum design. The absence of this standard will restrict the capacity of Web 2.0 adaptation into learning and adding more the complexity to provide meaningful learning. Therefore, this paper will attempt to draw a conceptual integration model which is being generated to reflect how learning activities with some facilitation of Web 2.0 is currently being implemented. The design of this model is based on shared experiences by many scholars as well as feedback gathered from two separate surveys conducted on teachers and a group of 180 students. Furthermore, this paper also recognizes some key components that generally engage in the design of a Web 2.0 teaching and learning which need to be addressed accordingly. Overall, the content of this paper will be organised as follows. The first part of the paper will introduce the importance of Web 2.0 implementation in teaching and learning from the perspective of higher education institutions and those challenges surrounding this area. The second part summarizes related works done in this field and brings forward the concept of designing learning with the incorporation of Web 2.0 technology. The next part presents the results of analysis derived from the two student and teachers surveys on using Web 2.0 during learning activities. This paper concludes by presenting a model that reflects several key entities that may be involved during the learning design.
Resumo:
Accepting the fact that culture and language are interrelated in second language learning (SLL), the web sites should be designed to integrate with the cultural aspects. Yet many SLL web sites fail to integrate with the cultural aspects and/or focus on language acquisition only. This study identified three issues: (1) anthropologists’ cultural models mostly adopted in cross-cultural web user interface have been superficially used; (2) web designers deal with culture as a fixed one which needs to be modeled into interface design elements, so (3) there is a need for a communication framework between educators and design practitioners, which can be utilized in web design processes. This paper discusses what anthropology can contribute to language learning, mediated through web design processes and suggests a cultural user experience framework for web-based SLL by presenting an exemplary matrix. To evaluate the effectiveness of the framework, the key stakeholders (learners, teachers, and designers) participated in a case scenario-based evaluation. The result shows a high possibility that the framework can enhance the effective communication and collaboration for the cultural integration.