842 resultados para 029902 Complex Physical Systems
Resumo:
In this article, we describe and model the language classroom as a complex adaptive system (see Logan & Schumann, 2005). We argue that linear, categorical descriptions of classroom processes and interactions do not sufficiently explain the complex nature of classrooms, and cannot account for how classroom change occurs (or does not occur), over time. A relational model of classrooms is proposed which focuses on the relations between different elements (physical, environmental, cognitive, social) in the classroom and on how their interaction is crucial in understanding and describing classroom action.
Resumo:
“Availability” is the terminology used in asset intensive industries such as petrochemical and hydrocarbons processing to describe the readiness of equipment, systems or plants to perform their designed functions. It is a measure to suggest a facility’s capability of meeting targeted production in a safe working environment. Availability is also vital as it encompasses reliability and maintainability, allowing engineers to manage and operate facilities by focusing on one performance indicator. These benefits make availability a very demanding and highly desired area of interest and research for both industry and academia. In this dissertation, new models, approaches and algorithms have been explored to estimate and manage the availability of complex hydrocarbon processing systems. The risk of equipment failure and its effect on availability is vital in the hydrocarbon industry, and is also explored in this research. The importance of availability encouraged companies to invest in this domain by putting efforts and resources to develop novel techniques for system availability enhancement. Most of the work in this area is focused on individual equipment compared to facility or system level availability assessment and management. This research is focused on developing an new systematic methods to estimate system availability. The main focus areas in this research are to address availability estimation and management through physical asset management, risk-based availability estimation strategies, availability and safety using a failure assessment framework, and availability enhancement using early equipment fault detection and maintenance scheduling optimization.
Resumo:
Cyber-physical systems tightly integrate physical processes and information and communication technologies. As today’s critical infrastructures, e.g., the power grid or water distribution networks, are complex cyber-physical systems, ensuring their safety and security becomes of paramount importance. Traditional safety analysis methods, such as HAZOP, are ill-suited to assess these systems. Furthermore, cybersecurity vulnerabilities are often not considered critical, because their effects on the physical processes are not fully understood. In this work, we present STPA-SafeSec, a novel analysis methodology for both safety and security. Its results show the dependencies between cybersecurity vulnerabilities and system safety. Using this information, the most effective mitigation strategies to ensure safety and security of the system can be readily identified. We apply STPA-SafeSec to a use case in the power grid domain, and highlight its benefits.
Resumo:
Self-replication and compartmentalization are two central properties thought to be essential for minimal life, and understanding how such processes interact in the emergence of complex reaction networks is crucial to exploring the development of complexity in chemistry and biology. Autocatalysis can emerge from multiple different mechanisms such as formation of an initiator, template self-replication and physical autocatalysis (where micelles formed from the reaction product solubilize the reactants, leading to higher local concentrations and therefore higher rates). Amphiphiles are also used in artificial life studies to create protocell models such as micelles, vesicles and oil-in-water droplets, and can increase reaction rates by encapsulation of reactants. So far, no template self-replicator exists which is capable of compartmentalization, or transferring this molecular scale phenomenon to micro or macro-scale assemblies. Here a system is demonstrated where an amphiphilic imine catalyses its own formation by joining a non-polar alkyl tail group with a polar carboxylic acid head group to form a template, which was shown to form reverse micelles by Dynamic Light Scattering (DLS). The kinetics of this system were investigated by 1H NMR spectroscopy, showing clearly that a template self-replication mechanism operates, though there was no evidence that the reverse micelles participated in physical autocatalysis. Active oil droplets, composed from a mixture of insoluble organic compounds in an aqueous sub-phase, can undergo processes such as division, self-propulsion and chemotaxis, and are studied as models for minimal cells, or protocells. Although in most cases the Marangoni effect is responsible for the forces on the droplet, the behaviour of the droplet depends heavily on the exact composition. Though theoretical models are able to calculate the forces on a droplet, to model a mixture of oils on an aqueous surface where compounds from the oil phase are dissolving and diffusing through the aqueous phase is beyond current computational capability. The behaviour of a droplet in an aqueous phase can only be discovered through experiment, though it is determined by the droplet's composition. By using an evolutionary algorithm and a liquid handling robot to conduct droplet experiments and decide which compositions to test next, entirely autonomously, the composition of the droplet becomes a chemical genome capable of evolution. The selection is carried out according to a fitness function, which ranks the formulation based on how well it conforms to the chosen fitness criteria (e.g. movement or division). Over successive generations, significant increases in fitness are achieved, and this increase is higher with more components (i.e. greater complexity). Other chemical processes such as chemiluminescence and gelation were investigated in active oil droplets, demonstrating the possibility of controlling chemical reactions by selective droplet fusion. Potential future applications for this might include combinatorial chemistry, or additional fitness goals for the genetic algorithm. Combining the self-replication and the droplet protocells research, it was demonstrated that the presence of the amphiphilic replicator lowers the interfacial tension between droplets of a reaction mixture in organic solution and the alkaline aqueous phase, causing them to divide. Periodic sampling by a liquid handling robot revealed that the extent of droplet fission increased as the reaction progressed, producing more individual protocells with increased self-replication. This demonstrates coupling of the molecular scale phenomenon of template self-replication to a macroscale physicochemical effect.
Resumo:
This chapter elucidates key ideas behind neurocomputational and ecological dynamics and perspectives of understanding the organisation of action in complex neurobiological systems. The need to study the close link between neurobiological systems and their environments (particularly their sensory and movement subsystems and the surrounding energy sources) is advocated. It is proposed how degeneracy in complex neurobiological systems provides the basis for functional variability in organisation of action. In such systems processes of cognition and action facilitate the specific interactions of each performer with particular task and environmental constraints.
Resumo:
This paper describes and evaluates the novel utility of network methods for understanding human interpersonal interactions within social neurobiological systems such as sports teams. We show how collective system networks are supported by the sum of interpersonal interactions that emerge from the activity of system agents (such as players in a sports team). To test this idea we trialled the methodology in analyses of intra-team collective behaviours in the team sport of water polo. We observed that the number of interactions between team members resulted in varied intra-team coordination patterns of play, differentiating between successful and unsuccessful performance outcomes. Future research on small-world networks methodologies needs to formalize measures of node connections in analyses of collective behaviours in sports teams, to verify whether a high frequency of interactions is needed between players in order to achieve competitive performance outcomes.
Resumo:
To ensure infrastructure assets are procured and maintained by government on behalf of citizens, appropriate policy and institutional architecture is needed, particularly if a fundamental shift to more sustainable infrastructure is the goal. The shift in recent years from competitive and resource-intensive procurement to more collaborative and sustainable approaches to infrastructure governance is considered a major transition in infrastructure procurement systems. In order to better understand this transition in infrastructure procurement arrangements, the concept of emergence from Complex Adaptive Systems (CAS) theory is offered as a key construct. Emergence holds that micro interactions can result in emergent macro order. Applying the concept of emergence to infrastructure procurement, this research examines how interaction of agents in individual projects can result in different industry structural characteristics. The paper concludes that CAS theory, and particularly the concept of ‘emergence’, provides a useful construct to understand infrastructure procurement dynamics and progress towards sustainability.
Resumo:
The control of the generation and assembly of the electronegative plasma-grown particles is discussed. Due to the large number of elementary processes of particle creation and loss, electronegative complex plasmas should be treated as open systems where the stationary states are sustained by various particle creation and loss processes in the plasma bulk, on the walls, and on the dust grain surfaces. To be physically self-consistent, ionization, diffusion, electron attachment, recombination, dust charge variation, and dissipation due to electron and ion elastic collisions with neutrals and fine particles, as well as charging collisions with the dust, must be accounted for.
Resumo:
In this paper we present an update on our novel visualization technologies based on cellular immune interaction from both large-scale spatial and temporal perspectives. We do so with a primary motive: to present a visually and behaviourally realistic environment to the community of experimental biologists and physicians such that their knowledge and expertise may be more readily integrated into the model creation and calibration process. Visualization aids understanding as we rely on visual perception to make crucial decisions. For example, with our initial model, we can visualize the dynamics of an idealized lymphatic compartment, with antigen presenting cells (APC) and cytotoxic T lymphocyte (CTL) cells. The visualization technology presented here offers the researcher the ability to start, pause, zoom-in, zoom-out and navigate in 3-dimensions through an idealised lymphatic compartment.
Resumo:
We propose that disruptive changes pertaining to complex product systems (CoPS) will yield a different set of characteristics than those traditionally observed for commodity products, and seek evidence for this proposition in a case study of the Flash Converting technology, a disruptive CoPS innovation in the copper production industry. Our results show that unlike disruptions in commodity product industries, the incumbent CoPS technology does not overshoot mainstream market performance demand. Also, the disruptive CoPS innovation: (i) is not nurtured in low-end niche markets; (ii) initially satisfies mainstream market performance demand, and; (iii) has higher unit price than the incumbent technology.
Resumo:
This review is focused on the impact of chemometrics for resolving data sets collected from investigations of the interactions of small molecules with biopolymers. These samples have been analyzed with various instrumental techniques, such as fluorescence, ultraviolet–visible spectroscopy, and voltammetry. The impact of two powerful and demonstrably useful multivariate methods for resolution of complex data—multivariate curve resolution–alternating least squares (MCR–ALS) and parallel factor analysis (PARAFAC)—is highlighted through analysis of applications involving the interactions of small molecules with the biopolymers, serum albumin, and deoxyribonucleic acid. The outcomes illustrated that significant information extracted by the chemometric methods was unattainable by simple, univariate data analysis. In addition, although the techniques used to collect data were confined to ultraviolet–visible spectroscopy, fluorescence spectroscopy, circular dichroism, and voltammetry, data profiles produced by other techniques may also be processed. Topics considered including binding sites and modes, cooperative and competitive small molecule binding, kinetics, and thermodynamics of ligand binding, and the folding and unfolding of biopolymers. Applications of the MCR–ALS and PARAFAC methods reviewed were primarily published between 2008 and 2013.
Resumo:
Failures in industrial organizations dealing with hazardous technologies can have widespread consequences for the safety of the workers and the general population. Psychology can have a major role in contributing to the safe and reliable operation of these technologies. Most current models of safety management in complex sociotechnical systems such as nuclear power plant maintenance are either non-contextual or based on an overly-rational image of an organization. Thus, they fail to grasp either the actual requirements of the work or the socially-constructed nature of the work in question. The general aim of the present study is to develop and test a methodology for contextual assessment of organizational culture in complex sociotechnical systems. This is done by demonstrating the findings that the application of the emerging methodology produces in the domain of maintenance of a nuclear power plant (NPP). The concepts of organizational culture and organizational core task (OCT) are operationalized and tested in the case studies. We argue that when the complexity of the work, technology and social environment is increased, the significance of the most implicit features of organizational culture as a means of coordinating the work and achieving safety and effectiveness of the activities also increases. For this reason a cultural perspective could provide additional insight into the problem of safety management. The present study aims to determine; (1) the elements of the organizational culture in complex sociotechnical systems; (2) the demands the maintenance task sets for the organizational culture; (3) how the current organizational culture at the case organizations supports the perception and fulfilment of the demands of the maintenance work; (4) the similarities and differences between the maintenance cultures at the case organizations, and (5) the necessary assessment of the organizational culture in complex sociotechnical systems. Three in-depth case studies were carried out at the maintenance units of three Nordic NPPs. The case studies employed an iterative and multimethod research strategy. The following methods were used: interviews, CULTURE-survey, seminars, document analysis and group work. Both cultural analysis and task modelling were carried out. The results indicate that organizational culture in complex sociotechnical systems can be characterised according to three qualitatively different elements: structure, internal integration and conceptions. All three of these elements of culture as well as their interrelations have to be considered in organizational assessments or important aspects of the organizational dynamics will be overlooked. On the basis of OCT modelling, the maintenance core task was defined as balancing between three critical demands: anticipating the condition of the plant and conducting preventive maintenance accordingly, reacting to unexpected technical faults and monitoring and reflecting on the effects of maintenance actions and the condition of the plant. The results indicate that safety was highly valued at all three plants, and in that sense they all had strong safety cultures. In other respects the cultural features were quite different, and thus the culturally-accepted means of maintaining high safety also differed. The handicraft nature of maintenance work was emphasised as a source of identity at the NPPs. Overall, the importance of safety was taken for granted, but the cultural norms concerning the appropriate means to guarantee it were little reflected. A sense of control, personal responsibility and organizational changes emerged as challenging issues at all the plants. The study shows that in complex sociotechnical systems it is both necessary and possible to analyse the safety and effectiveness of the organizational culture. Safety in complex sociotechnical systems cannot be understood or managed without understanding the demands of the organizational core task and managing the dynamics between the three elements of the organizational culture.