890 resultados para terrestrial turtles
Resumo:
Sparse terrestrial palynomorphs (spores and pollen) were recovered from glacigene Lower Miocene and Oligocene core samples from the Cape Roberts Project (CRP) drillhole CRP-2/2A, Victoria Land Basin, Antarctica. Rarity of palynomorphs probably results from the spares periglacial vegetation in the surrounding landscape at the time of deposition, as well as dilution from rapid sediment accumulation. The Miocene and Late Oligocene vegetation is interpreted as including herb-moss tundra with low-growing woody plants (including Nothofagus and podocarp conifers) in more protected areas, similar to that encountered in the Miocene of CRP-1. Species richness and numbers of specimens increase downhole, a trend that begins very gradually below ~307 mbsf, and increases below ~443 mbsf through the Early Oligocene. These lower assemblages reflect low diversity woody vegetation dominated by several species of Nofhofagus and podocarps, growing in somewhat milder conditions, though still cold temperate to periglacial in the Early Oligocene. The CRP-2/2A core provides new biostratigraphical information, such as the First Appearance Datums (FADS) of Tricolpites sp. a near the Oligocene/Miocene boundary, and Marchantiaceae in the Early/Late Oligocene transition: these are taxa that along with N. lachlaniae, Coptospora spp. and Podocarpidites sp.b characterize assemblages recovered from outcrops of the Pliocene Sirius Group in the Transantarctic Mountains. Some elements of the extremely hardy periglacial tundra vegetation that survived in Antarctica into the Pliocene had their origin in the Oligocene during a time of deteriorating (colder, drier) climatic conditions. The CRP results highlight the long persistence of this tundra vegetation, through approximately 30 million years of dynamically changing climatic conditions. Rare Jurassic and more common Permian-Triassic spores and pollen occur sporadically throughout the core. These are derived from Jurassic Ferrar Group sediments, and from the Permian-Triassic Victoria Group, upper Beacon Supergroup. Higher frequencies of reworked Beacon palynomorphs and coaly organic matter below ~307 mbsf indicate greater erosion of the Beacon Supergroup for this lower part of the core. A color range from black, severely metamorphosed specimens, to light-colored, yellow (indicating low thermal alteration), reworked Permian palynomorphs, indicates local provenance in the dolerite-intruded Beacon strata of the Transantarctic Mountains, as well as areas (now sub-ice) of Beacon strata with little or no associated dolerite well inland (cratonwards) of the present Transantarctic Mountains.
Resumo:
Reconstructing terrestrial water budgets is of prime importance for understanding past climate and environment. To shed more light on how plant-wax derived n-alkanes may be used for this purpose we investigated the distribution and stable isotopic compositions of hydrogen (dD) and carbon (d13C) of plant-wax derived n-C29 and -C31 alkanes in terrestrial, coastal and offshore surface sediments in relation to hydrology along a NW-SE transect east of the Italian Apennines from the Po River to the Eastern Gulf of Taranto. The plant wax average chain length increases southward and may relate to increasing temperature and/or aridity. The plant wax dD of the terrestrial and coastal samples also increases southward and mainly reflects changes in the dD of precipitation. The d13C of plant waxes is primarily interpreted in terms of C3 vegetation changes rather than varying contributions by C4 plants. The plant wax d13C-dD composition of the Po River and Apennine rivers differs considerably from that in southern Italy, and suggests a mainly southern source for plant waxes in marine sediments of the Gulf of Taranto. This calibration provides a basis for the reconstruction of past changes in the Italian water balance and n-alkane source areas.
Resumo:
The datasets present measurements of cDOM absorption in lakes, rivers and streams of Yamal and Gydan Peninsula area during the summer periods from 2012-2014 and 2016. In summer seasons of 2012 - 2013 water samples was collected during "Yamal-Arctic" Expedition. All of the research areas were located near the coastline of Yamal, Yavay, and Gydan Peninsula and Bely Island. In 2012 water samples from rivers, lakes and streams were taken near New Port, Cape Kamenny and Tambey settlements and in basins (water catchments) of the Sabetta, Seyakha, Yuribey (Baydaratskaya Bay, Gydan Peninsula) and Mongocheyakha rivers. In 2013 water samples from rivers, lakes and streams were taken in the Yavai Peninsula, Yayne Vong bay and in the basins (water catchments) of the Sabetta, Mongocheyakha and Yuribey (Gydan Peninsula) rivers. In 2014 lakes were sampled in the Erkuta River basin, south of Yamal Peninsula. In 2016 lakes and rivers were sampled it the Erkuta River basin and Polar Ural area. cDOM is operationally defined by the chosen filter pore size. Samples have been consistently filtrated through 0.7 µm pore size glas fibre filters. cDOM filtrates have been stored in darkness and have been measured after the expedition using the dual-beam Specord200 laboratory spectrometer (Jena Analytik) at the Otto Schmidt Laboratory OSL, Arctic and Antarctic Research Institute, St. Petersburg, Russia. The OSL cDOM protocol (Heim and Roessler, 2016) prescribes 3 Absorbance (A) measurements per sample from UV to 750 nm against ultra-pure water. The absorption coefficient, a, is calculated by a = 2.303A/L, where L is the pathlength of the cuvette [m], and the factor 2.303 converts log10 to loge. The output of the calculation is a continuous spectrum of a. The cDOM a spectra are used to determine the exponential slope value for specific wavelength ranges, S by fitting the data between min and max wavelength to an exponential function. We provide cDOM absorption coefficients for the wavelengths 254, 260, 350, 375, 400, 412, 440, 443 nm [1/m] and Slope values for three different UV, VIS, wavelength ranges: 275 to 295 nm, 350 to 400 nm, 300 to 500 nm [1/m]. All data were carried out by scientists from Arctic and Antarctic Research Institute and Saint Petersburg State University of Russia during "Yamal-Arctic" expeditions in 2012-2013, RFBR project No 14-04-10065 in 2014, No 14-05-00787 in 2016.
Resumo:
ntegrated terrestrial and marine records of northeast African vegetation are needed to provide long high resolution records of environmental variability with established links to specific terrestrial environments. In this study, we compare records of terrestrial vegetation preserved in marine sediments in the Gulf of Aden [Deep Sea Drilling Project (DSDP) Site 231] and an outcrop of lacustrine sediments in the Turkana Basin, Kenya, part of the East African Rift System. We analyzed higher plant biomarkers in sediments from both deposits of known equivalent age, corresponding to a ca. 50-100 ka humid interval prior to the b-Tulu Bor eruption ca. 3.40 Ma, when the Lokochot Lake occupied part of the Turkana Basin. Molecular abundance distributions indicate that long chain n-alkanoic acids in marine sediments are the most reliable proxy for terrestrial vegetation (Carbon Preference Index, CPI = 4.5), with more cautious interpretation needed for n-alkanes and lacustrine archives. Marine sediments record carbon isotopic variability in terrestrial biomarkers of 2-3 per mil, roughly equivalent to 20% variability in the C3/C4 vegetation contribution. The proportion of C4 vegetation apparently increased at times of low terrigenous dust input. Terrestrial sediments reveal much larger (2-10 per mil) shifts in n-alkanoic acid delta13C values. However, molecular abundance and isotopic composition suggest that microbial sources may also contribute fatty acids, contaminating the lacustrine sedimentary record of terrestrial vegetation.
Resumo:
Terrestrial organic matter (OM) in pelagic sediments is discussed with regard to depositional processes and land-sea interactions in the modern and past glacial/interglacial Equatorial Atlantic. Special emphasis is placed on a critical evaluation of different analytical approaches (C/N, Rock-Eval Pyrolysis, stable carbon isotopes, palynology, organic petrology, and selected biomarkers) which are currently used for the qualitative and quantitative assessment of terrigenous organic carbon. If binary mixing equations are used to calculate terrestrial and marine proportions of organic carbon, we consider the definition of endmember values to be most critical since these values may be biased by a great number of independent controls. A combination of geochemical methods including optical studies (organic petrology and palynology) is therefore suggested to evaluate each individual proxy. Organic geochemical analyses performed on sediments from the modern and Late Quaternary Equatorial Atlantic evidence fluctuations in eolian supply of terrigenous OM related to changes in intensity of the trade winds. Quantification of this organic fraction leads to differing proportions depending on the approach applied, i.e. the organic carbon isotopic composition or maceral analyses. Modern distribution of terrigenous OM reveals a decrease in supply towards the basin contributing less than a fifth of the total OM in pelagic areas. Organic geochemical data indicate that sedimentation in the modern northeastern Brasil Basin is affected by lateral advection of reworked OM probably from southern source areas. Glacial/interglacial deposits from the pelagic Equatorial Atlantic (ODP Site 663), covering isotopic stages 12 and 11, reveal that deposition of terrigenous OM was higher under past glacial conditions, in correspondence to generally enhanced dust fluxes. Proportions of terrigenous OM, however, never exceed 50% of the total OM according to maceral analyses. Other estimates, recently proposed by Verardo and Ruddiman (1996), are considered to be too high probably for analytical reasons. Palynological records in the Equatorial Atlantic parallel dust records. Increased portions of grass pollen suggest the admixture of C4-plant material under modern and past glacial conditions. It is therefore assumed, as one possible interpetation, that C4-plant debris has an effect on sedimentary d13Corg and might explain differences between isotopic and microscopic quantitative estimates. Using the difference between these two records, we calculate that maximum supply of C4-material remains below 20% of the total OM for the deep modern and past glacial/interglacial Equatorial Atlantic.