999 resultados para talkback radio


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical emission spectra from a low-pressure Ar plasma were studied with high spatial resolution. It has been shown that the intensity ratios of Ar lines excited through metastable levels to those excited directly from the ground state are sensitive to the shape of electron energy distribution function. From these measurements, important information on the spatial variation of plasma parameters can be obtained. (C) 1999 American Institute of Physics. [S0003-6951(99)01629-0].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron energy probability functions measured with a passively compensated Langmuir probe in asymmetric capacitively coupled hydrogen and deuterium plasmas exhibit structure. The otherwise relatively continuous distribution appears to have an abrupt peak in electron density near 5 eV. This structure occurs at a higher energy in deuterium than hydrogen and there is a correlation between floating potential and the voltage at which the structure is observed in the second derivative of the I(V) characteristic. While the cause of the structure has yet to be clarified, spectroscopic observations and computer-based hydrogen models indicate that the high energy tail of the distribution is strongly modulated during the radio frequency cycle. The effect of this modulation on plasma properties and probe measurements has yet to be explored. (C) 1999 American Institute of Physics. [S0003-6951(99)00819-0].

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the detection of Voigt spectral line profiles of radio recombination lines (RRLs) toward Sagittarius B2(N) with the 100 m Green Bank Telescope (GBT). At radio wavelengths, astronomical spectra are highly populated with RRLs, which serve as ideal probes of the physical conditions in molecular cloud complexes. An analysis of the Hn alpha lines presented herein shows that RRLs of higher principal quantum number (n > 90) are generally divergent from their expected Gaussian profiles and, moreover, are well described by their respective Voigt profiles. This is in agreement with the theory that spectral lines experience pressure broadening as a result of electron collisions at lower radio frequencies. Given the inherent technical difficulties regarding the detection and profiling of true RRL wing spans and shapes, it is crucial that the observing instrumentation produce flat baselines as well as high-sensitivity, high-resolution data. The GBT has demonstrated its capabilities regarding all of these aspects, and we believe that future observations of RRL emission via the GBT will be crucial toward advancing our knowledge of the larger-scale extended structures of ionized gas in the interstellar medium (ISM).