973 resultados para sulfur amino acids


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cento e sessenta e duas poedeiras semipesadas anteriormente submetidas à muda forçada foram distribuídas em um delineamento inteiramente ao acaso, com três tratamentos e nove repetições de seis aves para cada. Os tratamentos consistiram no fornecimento de rações contendo 0,45, 0,60 e 0,75% de aminoácidos sulfurados totais (AAST) durante 30 dias após o término da muda forçada (fase de pós-muda). Após os 30 dias, cada um dos tratamentos adotados na fase de pós-muda foi desmembrado nos mesmos níveis de AAST, compondo, portanto, um delineamento inteiramente ao acaso em esquema fatorial 3x3 (3 níveis de AAST da fase pós-muda - 0,45; 0,60 e 0,75% x 3 níveis de AAST na fase de produção - 0,45; 0,60 e 0,75%), sendo os tratamentos nesta fase compostos de três repetições de seis aves cada. Na fase de pós-muda, o menor nível de AAST determinou menores valores para consumo de ração (P< 0,01), consumo de AAST (P< 0,01) e peso corporal (P< 0,01). Na fase de produção do segundo ciclo produtivo, o único parâmetro afetado (P<0,05) pelo nível de AAST utilizado na fase de pós-muda foi o peso do ovo, sendo o menor valor obtido com o nível de 0,45%. O nível de 0,45% de AAST utilizado na fase de produção não atendeu às exigências da aves, determinando pior desempenho produtivo (P<0,01). O nível de 0,60% de AAST foi suficiente para a fase de pós-muda e para o segundo ciclo de produção.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Com o objetivo de determinar as exigências de metionina+cistina, foram utilizados 1440 e 1080 frangos de corte da marca comercial Hubbard, 50% de cada sexo, para as fases de crescimento e acabamento, respectivamente. Seis níveis de suplementação de DL-metionina (0,0; 0,06, 0,12; 0,18; 0,24; e 0,30%) foram adicionados às rações basais deficientes em metionina+cistina. Foram avaliados, aos 22-42 e 43-56 dias, ganho de peso, consumo de ração, conversão alimentar, rendimento e composição química da carcaça, gordura abdominal e concentração plasmática de ácido úrico. Com base nas análises estatística e nos parâmetros estudados durante a fase de crescimento (22 a 42 dias de idade), sugere-se utilizar 0,896 e 0,856% de metionina+cistina total para machos e fêmeas, respectivamente. Para a fase de acabamento (43 a 56 dias de idade), com base nas análises estatísticas e nos parâmetros estudados, sugere-se utilizar 0,764 e 0,740% de metionina+cistina total para machos e fêmeas, respectivamente.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One experiment was conducted to evaluate the effect of using different lysine and methionine + cystine levels on body weight recovery, performance, and egg quality of laying hens during the postmolting period. In this trial, 432 Isa Brown layers, with 72 weeks of age, were distributed in 54 cages according to a completely randomized design with six treatments and nine replicates of eight birds each. During the resting period, six diets with different digestible lysine and methionine + cystine levels were used, as follows: 0.48% digestible lysine and 0.43% methionine + cystine; 0.48% digestible lysine and 0.47% methionine + cystine; 0.48% digestible lysine and 0.52% methionine + cystine; 0.56% digestible lysine and 0.50% methionine + cystine; 0.56% digestible lysine and 0.56% methionine + cystine; 0.56% digestible lysine and 0.62% methionine + cystine. Data were submitted to analysis of variance and means were compared at by Tukey's test at 5% probability level. The different lysine and methionine + cystine levels in the diets fed during the resting period significantly influenced layer performance. The diet containing 0.56% lysine and 0.56% methionine + cystine promoted higher egg weight eggs during the second production cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Food base excess (BE, mEq/kg) can be calculated from the diet macroelements, together with either the sulfur amino acids methionine and cysteine (BEaa) or total sulfur (BEs) concentrations. The present study compared the use of sulfur or methionine and cysteine for calculating the food BE (experiment 1) and investigated the influence of food BE on blood gas analysis and the urine pH of cats, and proposes a prediction equation to estimate the urine pH of cats fed kibble diets based on the calculated food BE (experiments 2 and 3). In experiment 1, nine healthy, adult cats were used in a change-over design and fed with nine commercial dry cat foods. The cats were housed in metabolism cages over seven days for adaptation and three days for total urine collection. All of the urine produced over 24h was pooled by cat and diet. The cats' acid-base status was assessed through blood gas analysis after 10 days of diet consumption. A mean difference of -115mEq/kg between BEs and BEaa was observed, which could be explained by a greater concentration of sulfur in the whole diet than in methionine and cysteine. Urine pH presented a stronger correlation with food BEs (R2=0.95; P<0.001) than with food BEaa (R2=0.86; P<0.001). Experiment 2 included 30 kibble diets, and each diet was tested in six cats. The food BEs varied between -180 and +307mEq/kg, and the urine pH of the cats varied between 5.60 and 7.74. A significant correlation was found between the measured urine pH and the food BEs (urinary pH=6.269+[0.0036×BEs]+[0.000003×BEs2]; R2=0.91; P<0.001). In experiment 3, eight kibble diets were tested (food BEs between -187mEq/kg and +381mEq/kg) to validate the equation proposed in experiment 2 and to compare the obtained results with previously published formulae. The results of the proposed formula presented a high concordance correlation coefficient (0.942) and high accuracy (0.979) with the measured values, and the estimates of urine pH did not differ from the values obtained in cats (P>0.05). The cats' venous blood pH, bicarbonate, and blood BE were correlated with food BEs (P<0.001); the consumption of diets with low food BEs induced a reduction in these parameters. In conclusion, food macroelement composition has a strong influence on cats' acid-base equilibrium and food BEs calculation is a useful tool to formulate and balance kibble diets for felines. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulfite oxidase catalyzes the terminal reaction in the degradation of sulfur amino acids. Genetic deficiency of sulfite oxidase results in neurological abnormalities and often leads to death at an early age. The mutation in the sulfite oxidase gene responsible for sulfite oxidase deficiency in a 5-year-old girl was identified by sequence analysis of cDNA obtained from fibroblast mRNA to be a guanine to adenine transition at nucleotide 479 resulting in the amino acid substitution of Arg-160 to Gln. Recombinant protein containing the R160Q mutation was expressed in Escherichia coli, purified, and characterized. The mutant protein contained its full complement of molybdenum and heme, but exhibited 2% of native activity under standard assay conditions. Absorption spectroscopy of the isolated molybdenum domains of native sulfite oxidase and of the R160Q mutant showed significant differences in the 480- and 350-nm absorption bands, suggestive of altered geometry at the molybdenum center. Kinetic analysis of the R160Q protein showed an increase in Km for sulfite combined with a decrease in kcat resulting in a decrease of nearly 1,000-fold in the apparent second-order rate constant kcat/Km. Kinetic parameters for the in vitro generated R160K mutant were found to be intermediate in value between those of the native protein and the R160Q mutant. Native sulfite oxidase was rapidly inactivated by phenylglyoxal, yielding a modified protein with kinetic parameters mimicking those of the R160Q mutant. It is proposed that Arg-160 attracts the anionic substrate sulfite to the binding site near the molybdenum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pyrimethanil is a fungicide mostly applied in vineyards. When misused, residue levels detected in grape must or in the environment may be of concern. The present work aimed to analyze mechanisms underlying response to deleterious effects of pyrimethanil in the eukaryotic model Saccharomyces cerevisiae. Pyrimethanil concentration-dependent effects at phenotypic (inhibition of growth) and transcriptomic levels were examined. For transcriptional profiling, analysis focused on two sublethal exposure conditions that inhibited yeast growth by 20% or 50% compared with control cells not exposed to the fungicide. Gene expression modifications increased with the magnitude of growth inhibition, in numbers and fold-change of differentially expressed genes and in diversity of over-represented functional categories. These included mostly biosynthesis of arginine and sulfur amino acids metabolism, as well as energy conservation, antioxidant response, and multidrug transport. Several pyrimethanil-responsive genes encoded proteins sharing significant homology with proteins from phytopathogenic fungi and ecologically relevant higher eukaryotes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Yeast cells contain a family of three monothiol glutaredoxins: Grx3, 4, and 5. Absence of Grx5 leads to constitutive oxidative damage, exacerbating that caused by external oxidants. Phenotypic defects associated with the absence of Grx5 are suppressed by overexpression ofSSQ1 and ISA2, two genes involved in the synthesis and assembly of iron/sulfur clusters into proteins. Grx5 localizes at the mitochondrial matrix, like other proteins involved in the synthesis of these clusters, and the mature form lacks the first 29 amino acids of the translation product. Absence of Grx5 causes: 1) iron accumulation in the cell, which in turn could promote oxidative damage, and 2) inactivation of enzymes requiring iron/sulfur clusters for their activity. Reduction of iron levels in grx5 null mutants does not restore the activity of iron/sulfur enzymes, and cell growth defects are not suppressed in anaerobiosis or in the presence of disulfide reductants. Hence, Grx5 forms part of the mitochondrial machinery involved in the synthesis and assembly of iron/sulfur centers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wheat flour from plants deficient in sulfur has been shown to contain substantially higher levels of free amino acids, particularly asparagine and glutamine, than flour from wheat grown where sulfur nutrition was sufficient. Elevated levels of asparagine resulted in acrylamide levels up to 6 times higher in sulfur-deprived wheat flour, compared with sulfur-sufficient wheat flour, for three varieties of winter wheat. The volatile compounds from flour, heated at 180 degrees C for 20 min, have been compared for these three varieties of wheat grown with and without sulfur fertilizer. Approximately 50 compounds were quantified in the headspace extracts of the heated flour; over 30 compounds were affected by sulfur fertilization, and 15 compounds were affected by variety. Unsaturated aldehydes formed from aldol condensations, Strecker. aldehydes, alkylpyrazines, and low molecular weight alkylfurans were found at higher concentrations in the sulfur-deficient flour, whereas low molecular weight pyrroles and thiophenes and sugar breakdown products were found at higher concentrations in the sulfur-sufficient flour. The reasons for these differences and the relationship between acrylamide formation and aroma volatile formation are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acrylamide forms from free asparagine and reducing sugars during cooking, with asparagine concentration being the key parameter determining the formation in foods produced from wheat flour. In this study free amino acid concentrations were measured in the grain of varieties Spark and Rialto and four doubled haploid lines from a Spark x Rialto mapping population. The parental and doubled haploid lines had differing levels of total free amino acids and free asparagine in the grain, with one line consistently being lower than either parent for both of these factors. Sulfur deprivation led to huge increases in the concentrations of free asparagine and glutamine, and canonical variate analysis showed clear separation of the grain samples as a result of treatment (environment, E) and genotype (G) and provided evidence of G x E interactions. Low grain sulfur and high free asparagine concentration were closely associated with increased risk of acrylamide formation. G, E, and G x E effects were also evident in grain from six varieties of wheat grown at field locations around the United Kingdom in 2006 and 2007. The data indicate that progress in reducing the risk of acrylamide formation in processed wheat products could be made immediately through the selection and cultivation of low grain asparagme varieties and that further genetically driven improvements should be achievable. However, genotypes that are selected should also be tested under a range of environmental conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amino acid composition of bottom sediments on the northwestern continental slope of Africa is determined. Correlation similar to that found earlier in Caspian sediments between type of amino acid spectra of Atlantic sediments and distribution of reduced forms of sulfur in them is found. These correlations result from geochemical activity of benthic biocoenosis, which transforms sulfur compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sulfur K-edge x-ray absorption spectra for the amino acids cysteine and methionine and their corresponding oxidized forms cystine and methionine sulfoxide are presented. Distinct differences in the shape of the edge and the inflection point energy for cysteine and cystine are observed. For methionine sulfoxide the inflection point energy is 2.8 eV higher compared with methionine. Glutathione, the most abundant thiol in animal cells, also has been investigated. The x-ray absorption near-edge structure spectrum of reduced glutathione resembles that of cysteine, whereas the spectrum of oxidized glutathione resembles that of cystine. The characteristic differences between the thiol and disulfide spectra enable one to determine the redox status (thiol to disulfide ratio) in intact biological systems, such as unbroken cells, where glutathione and cyst(e)ine are the two major sulfur-containing components. The sulfur K-edge spectra for whole human blood, plasma, and erythrocytes are shown. The erythrocyte sulfur K-edge spectrum is similar to that of fully reduced glutathione. Simulation of the plasma spectrum indicated 32% thiol and 68% disulfide sulfur. The whole blood spectrum can be simulated by a combination of 46% disulfide and 54% thiol sulfur.