947 resultados para sickle cell anemia studies


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the mouse, gamete recognition is mediated in part by the binding of sperm surface $\beta$1,4 galactosyltransferase (GalTase) to specific oligosaccharide residues on the zona pellucida ZP3. The expression of GalTase on the sperm surface is regulated by alleles within the distal segment of the T/t complex and results in a haploid-specific increase in GalTase expression on spermatids and sperm from t-bearing males, suggesting that differences in sperm GalTase activity may contribute to t-sperm transmission ratio distortion. In this study, the expression of GalTase RNA during wild-type and T/t-mutant spermatogenesis was characterized and the role of GalTase was analyzed in transmission ratio distortion. It was found that spermatogenic cells predominantly express the long form of the GalTase RNA, which encodes the GalTase protein that is preferentially targeted to the cell surface in somatic cells. In wild-type testes, GalTase RNA accumulates during the maturation of primary spermatocytes, reaches peak levels prior to meiosis, and decreases and meiosis. GalTase RNA accumulates to similar levels during the maturation of +/t and t/t primary spermatocytes, but unlike wild-type, the level of GalTase RNA in t-spermatocytes remains elevated during meiotic division. Consequently, spermatids in t-mutant testes inherit higher levels of GalTase RNA than do wild-type spermatids, which likely accounts for the haploid-specific increase in surface GalTase activity characteristic of spermatids from t-bearing mice.^ The functional significance of the increased GalTase activity during t-sperm transmission ratio distortion was determined by examining the distribution of GalTase RNA and surface GalTase protein in haploid spermatids from +/t males. Results show that +- and t-spermatids have similar levels of both GalTase RNA and protein, indicating that transmission ratio distortion in +/t mice is not likely due to haploid-specific differences in sperm surface GalTase activity.^ The presence of GalTase on the surface of an early spermatogenic cells before it is required on the mature sperm to perform its function during gamete binding suggests a separate function for GalTase in Sertoli-germ cell adhesion. Studies indicate that cell surface GalTase partly mediates the initial adhesion of pachytene spermatocytes, but not haploid spermatids, to Sertoli cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Premature termination of protein synthesis by nonsense mutations is at the molecular origin of a number of inherited disorders in the family of G protein-coupled seven-helix receptor proteins. To understand how such truncated polypeptides are processed by the cell, we have carried out COS-1 cell expression studies of mutants of bovine rhodopsin truncated at the first 1, 1.5, 2, 3, or 5 transmembrane segments (TMS) of the seven present in wild-type opsin. Our experiments show that successful completion of different stages in the cellular processing of the protein [membrane insertion, N-linked glycosylation, stability to proteolytic degradation, and transport from the endoplasmic reticulum (ER) membrane] requires progressively longer lengths of the polypeptide chain. Thus, none of the truncations affected the ability of the polypeptides to be integral membrane proteins. C-terminal truncations that generated polypeptides with fewer than two TMS resulted in misorientation and prevented glycosylation at the N terminus, whereas truncations that generated polypeptides with fewer than five TMS greatly destabilized the protein. However, all of the truncations prevented exit of the polypeptide from the ER. We conclude that during the biogenesis of rhodopsin, proper integration into the ER membrane occurs only after the synthesis of at least two TMS is completed. Synthesis of the next three TMS confers a gradual increase in stability, whereas the presence of more than five TMS is necessary for exit from the ER.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fas activation triggers apoptosis in many cell types. Studies with anti-Fas antibodies have produced conflicting results on Fas signaling, particularly the role of the Bcl-2 family in this process. Comparison between physiological ligand and anti-Fas antibodies revealed that only extensive Fas aggregation, by membrane bound FasL or aggregated soluble FasL consistently triggered apoptosis, whereas antibodies could act as death agonists or antagonists. Studies on Fas signaling in cell lines and primary cells from transgenic mice revealed that FADD/MORT1 and caspase-8 were required for apoptosis. In contrast, Bcl-2 or Bcl-xL did not block FasL-induced apoptosis in lymphocytes or hepatocytes, demonstrating that signaling for cell death induced by Fas and the pathways to apoptosis regulated by the Bcl-2 family are distinct.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-efficiency entry of the enteropathogenic bacterium Yersinia pseudotuberculosis into nonphagocytic cells is mediated by the bacterial outer membrane protein invasin. Invasin-mediated uptake requires high affinity binding of invasin to multiple β1 chain integrin receptors on the host eukaryotic cell. Previous studies using inhibitors have indicated that high-efficiency uptake requires tyrosine kinase activity. In this paper we demonstrate a requirement for focal adhesion kinase (FAK) for invasin-mediated uptake. Overexpression of a dominant interfering form of FAK reduced the amount of bacterial entry. Specifically, the autophosphorylation site of FAK, which is a reported site of c-Src kinase binding, is required for bacterial internalization, as overexpression of a derivative lacking the autophosphorylation site had a dominant interfering effect as well. Cultured cells expressing interfering variants of Src kinase also showed reduced bacterial uptake, demonstrating the involvement of a Src-family kinase in invasin-promoted uptake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a method to design dominant-negative proteins (D-N) to the basic helix–loop–helix–leucine zipper (B-HLHZip) family of sequence-specific DNA binding transcription factors. The D-Ns specifically heterodimerize with the B-HLHZip dimerization domain of the transcription factors and abolish DNA binding in an equimolar competition. Thermal denaturation studies indicate that a heterodimer between a Myc B-HLHZip domain and a D-N consisting of a 12-amino acid sequence appended onto the Max dimerization domain (A-Max) is −6.3 kcal⋅mol−1 more stable than the Myc:Max heterodimer. One molar equivalent of A-Max can totally abolish the DNA binding activity of a Myc:Max heterodimer. This acidic extension also has been appended onto the dimerization domain of the B-HLHZip protein Mitf, a member of the transcription factor enhancer binding subfamily, to produce A-Mitf. The heterodimer between A-Mitf and the B-HLHZip domain of Mitf is −3.7 kcal⋅mol−1 more stable than the Mitf homodimer. Cell culture studies show that A-Mitf can inhibit Mitf-dependent transactivation both in acidic extension and in a dimerization-dependent manner. A-Max can inhibit Myc-dependent foci formation twice as well as the Max dimerization domain (HLHZip). This strategy of producing D-Ns may be applicable to other B-HLHZip or B-HLH proteins because it provides a method to inhibit the DNA binding of these transcription factors in a dimerization-specific manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In wild-type yeast mitochondrial inheritance occurs early in the cell cycle concomitant with bud emergence. Cells lacking the PTC1 gene initially produce buds without a mitochondrial compartment; however, these buds later receive part of the mitochondrial network from the mother cell. Thus, the loss of PTC1 causes a delay, but not a complete block, in mitochondrial transport. PTC1 encodes a serine/threonine phosphatase in the high-osmolarity glycerol response (HOG) pathway. The mitochondrial inheritance delay in the ptc1 mutant is not attributable to changes in intracellular glycerol concentrations or defects in the organization of the actin cytoskeleton. Moreover, epistasis experiments with ptc1Δ and mutations in HOG pathway kinases reveal that PTC1 is not acting through the HOG pathway to control the timing of mitochondrial inheritance. Instead, PTC1 may be acting either directly or through a different signaling pathway to affect the mitochondrial transport machinery in the cell. These studies indicate that the timing of mitochondrial transport in wild-type cells is genetically controlled and provide new evidence that mitochondrial inheritance does not depend on a physical link between the mitochondrial network and the incipient bud site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Niemann–Pick type C1 (NPC1) disease results from a defect in the NPC1 protein and is characterized by a pathological accumulation of cholesterol and glycolipids in endocytic organelles. We followed the biosynthesis and trafficking of NPC1 with the use of a functional green fluorescent protein-fused NPC1. Newly synthesized NPC1 is exported from the endoplasmic reticulum and requires transit through the Golgi before it is targeted to late endosomes. NPC1-containing late endosomes then move by a dynamic process involving tubulation and fission, followed by rapid retrograde and anterograde migration along microtubules. Cell fusion studies with normal and mutant NPC1 cells show that exchange of contents between late endosomes and lysosomes depends upon ongoing tubulovesicular late endocytic trafficking. In turn, rapid endosomal tubular movement requires an intact NPC1 sterol-sensing domain and is retarded by an elevated endosomal cholesterol content. We conclude that the neuropathology and cellular lysosomal lipid accumulation in NPC1 disease results, at least in part, from striking defects in late endosomal tubulovesicular trafficking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a novel DNA damage binding activity in nuclear extracts from a normal human fibroblast cell strain. This protein was identified using electrophoretic mobility shift assays of immunopurified UV-irradiated oligonucleotide substrates containing a single, site-specific cyclobutane pyrimidine dimer or a pyrimidine (6-4) pyrimidinone photoproduct. Compared with the (6-4) photoproduct, which displayed similar levels of binding in double and single-stranded substrates, the protein showed somewhat lower affinity for the cyclobutane dimer in a single-stranded oligonucleotide and negligible binding in double-stranded DNA. The specificity and magnitude of binding was similar in cells with normal excision repair (GM637) and repair-deficient cells from xeroderma pigmentosum groups A (XP12RO) and E (XP2RO). An apparent molecular mass of 66 kDa consisting of two subunits of approximately 22 and approximately 44 kDa was determined by Southwestern analysis. Cell cycle studies using centrifugal cell elutriation indicated that the binding activity was significantly greater in G1 phase compared with S phase in a human lymphoblast cell line. Gel supershift analysis using an anti-replication protein A antibody showed that the binding protein was not antigenically related to the human single-stranded binding protein. Taken together, these data suggest that this activity represents a novel DNA damage binding protein that, in addition to a putative role in excision repair, may also function in cell cycle or gene regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many of the molecules necessary for neurotransmission are homologous to proteins involved in the Golgi-to-plasma membrane stage of the yeast secretory pathway. Of 15 genes known to be essential for the later stages of vesicle trafficking in yeast, 7 have no identified mammalian homologs. These include the yeast SEC6, SEC8, and SEC15 genes, whose products are constituents of a 19.5S particle that interacts with the GTP-binding protein Sec4p. Here we report the sequences of rSec6 and rSec8, rat homologs of Sec6p and Sec8p. The rSec6 cDNA is predicted to encode an 87-kDa protein with 22% amino acid identity to Sec6p, and the rSec8 cDNA is predicted to encode a 110-kDa protein which is 20% identical to Sec8p. Northern blot analysis indicates that rSec6 and rSec8 are expressed in similar tissues. Immunodetection reveals that rSec8 is part of a soluble 17S particle in brain. COS cell cotransfection studies demonstrate that rSec8 colocalizes with the GTP-binding protein Rab3a and syntaxin 1a, two proteins involved in synaptic vesicle docking and fusion at the presynaptic terminal. These data suggest that rSec8 is a component of a high molecular weight complex which may participate in the regulation of vesicle docking and fusion in brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

beta zero-Thalassemia is an inherited disorder characterized by the absence of beta-globin polypeptides derived from the affected allele. The molecular basis for this deficiency is a mutation of the adult beta-globin structural gene or cis regulatory elements that control beta-globin gene expression. A mouse model of this disease would enable the testing of therapeutic regimens designed to correct the defect. Here we report a 16-kb deletion that includes both adult beta-like globin genes, beta maj and beta min, in mouse embryonic stem cells. Heterozygous animals derived from the targeted cells are severely anemic with dramatically reduced hemoglobin levels, abnormal red cell morphology, splenomegaly, and markedly increased reticulocyte counts. Homozygous animals die in utero; however, heterozygous mice are fertile and transmit the deleted allele to progeny. The anemic phenotype is completely rescued in progeny derived from mating beta zero-thalassemic animals with transgenic mice expressing high levels of human hemoglobin A. The beta zero-thalassemic mice can be used to test genetic therapies for beta zero-thalassemia and can be bred with transgenic mice expressing high levels of human hemoglobin HbS to produce an improved mouse model of sickle cell disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de doutoramento, Farmácia (Tecnologia Farmacêutica), Universidade de Lisboa, Faculdade de Farmácia, 2016

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasmodium sporozoites are transmitted by Anopheles mosquitoes and infect hepatocytes, where a single sporozoite replicates into thousands of merozoites inside a parasitophorous vacuole. The nature of the Plasmodium-host cell interface, as well as the interactions occurring between these two organisms, remains largely unknown. Here we show that highly dynamic hepatocyte actin reorganization events occur around developing Plasmodium berghei parasites inside human hepatoma cells. Actin reorganization is most prominent between 10 to 16 hours post infection and depends on the actin severing and capping protein, gelsolin. Live cell imaging studies also suggest that the hepatocyte cytoskeleton may contribute to parasite elimination during Plasmodium development in the liver.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Programmed cell death, apoptosis, is a highly regulated process that removes damaged or unwanted cells in vivo and has significant immunological implications. Defective clearance of apoptotic cells by macrophages (professional phagocytes) is known to result in chronic inflammatory and autoimmune disease. Tissue transglutaminase 2 (TG2) is a Ca2+-dependent protein cross linking enzyme known to play an important role in a number of cell functions. Up-regulation of TG2 is thought to be involved in monocyte to macrophage differentiation and defective clearance of apoptotic cells by TG2 null mice has been described though in this context the role of TG2 is yet to be fully elucidated. Cell surface-associated TG2 is now recognized as being important in regulating cell adhesion and migration, via its association with cell surface receptors such as syndecan-4, ß1 and ß3 integrin, but its extracellular role in the clearance of apoptotic cells is still not fully explored. Our work aims to characterize the role of TG2 and its partners (e.g. syndecan-4 and ß3 integrin) in macrophage function within the framework of apoptotic cell clearance. Both THP-1 cell-derived macrophage-like cells and primary human macrophages were analyzed for the expression and function of TG2. Macrophage-apoptotic cell interaction studies in the presence of TG2 inhibitors (both cell permeable and impermeable, irreversible and active site directed) resulted in significant inhibition of interaction indicating a possible role for TG2 in apoptotic cell clearance. Macrophage cell surface TG2 and, in particular, its cell surface crosslinking activity was found to be crucial in dictating apoptotic cell clearance. Our further studies demonstrate syndecan-4 association with TG2 and imply possible cooperation of these proteins in apoptotic cell clearance. Knockdown studies of syndecan-4 reveal its importance in apoptotic cell clearance. Our current findings suggest that TG2 has a crucial but yet to be fully defined role in apoptotic cell clearance which seems to involve protein cross linking and interaction with other cell surface receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Programmed cell death, apoptosis, is a highly regulated process that removes damaged or unwanted cells in vivo and has significant immunological implications. Defective clearance of apoptotic cells by macrophages (professional phagocytes) is known to result in chronic inflammatory and autoimmune disease. Transglutaminase-2 (TG2) is a Ca2+-dependent protein crosslinking enzyme known to play an important role in apoptotic cell clearance by macrophages through an ill-defined mechanism. Several studies have implicated TG2 in the apoptosis programme e.g. raised TG2 levels in cells undergoing apoptosis; increased cell death with down-regulation of TG2; up-regulation of TG2 in monocytes upon differentiation into macrophages. Defective clearance of apoptotic cells by TG2 null mice has been described though in this context the role of TG2 is yet to be elucidated. Here we aim to characterise the role of TG2 in macrophage function with a focus on apoptotic cell clearance. THP-1 monocytes were induced to differentiate to macrophage-like cells by three different stimulants and were analysed for the presence of TG2. Macrophage-apoptotic cell interaction studies in the presence and absence of irreversible TG2 inhibitors resulted in significant inhibition of interaction indicating a possible role for TG2 in apoptotic cell clearance. TG2 was expressed at the macrophage cell surface and its association with ß3 integrin expression suggests the possible link between TG2 and ß3 integrins. Our current findings suggest that TG2 had got a crucial but yet to be defined role in apoptotic cell clearance.