971 resultados para sequestro stoccaggio CO2 EOR idrocarburi
Resumo:
The terrestrial blue-green alga (cyanobacterium), Nostoc flagelliforme, was cultured in air at various levels of CO2, light and watering to see their effects on its growth. The alga showed the highest relative growth rate at the conditions of high CO2 (1500 ppm), high light regime (219-414 mu mol m(-2)s(-1)) and twice daily watering, but the lowest rate at the conditions of low light (58-114 mu mol m(-2)s(-1)) and daily twice watering. Increased watering had little effect on growth rate at 350 ppm CO2, but increased by about 70% at 1500ppm CO2 under high light conditions. It was concluded that enriched CO2 could enhance the growth of N. flagelliforme when sufficient light and water was supplied.
Resumo:
A high-CO2-requiring mutant of Synechococcus sp. PCC7942 las been isolated after chemical mutagenesis of ethyl methane sulphonate (EMS). It was able to grow at 4% CO2, but not under ambient CO2. The initial screening of the mutant showed that the genetic reversion rate was about 10(-7) and death occurred 2 -3 days after being transferred from 4% CO2 to the ambient air. Its photosynthetic dependence on external dissolved inorganic carbon was higher than that of the wild type cells, but its carbonic anhydrase activity was comparatively low. In the ultrastructural level, various types of aberrant carboxysomes appeared in the mutant cells: rod-shaped carboxysomes, irregular carboxysomes and the "empty-inclusion carboxysomes" with increasing number of glycogen granules surrounding the thylakoids. All these alterations indicated that the mutant was defective in utilizing the external CO2. The induction of carboxysomes by lower levels of CO2 and the biogenesis of carboxysomes are herein discussed.
Resumo:
In order to define its characteristics of the photosynthetic utilization of CO2 and HCO3- when the ambient inorganic carbon changed, HCG (High-CO2-Growing Cells) of cyanobacterium Anabaena sp. strain PCC7120 were prepared. The growth rate of HCG was higher than that of LCG (low-CO2-growing cells, i.e. air-growing cells). When the HCG cells were transferred from 5% CO2 to air levels of CO2 , a series of changes took place: its carbonic anhydrase activity as well as its photosynthetic affinity to the external inorganic carbon significantly increased; the number of the carboxysomes, which is one of the most important components of CCM in cyanobacteria also increased. These facts indicated that the CCM activity of Anabaena PCC 7120 was induced. When the pH in the medium increased from 6 to 9, the photosynthetic affinity to external inorganic carbon of both HCG and LCG declined, while the apparent photosynthetic affinity to external CO2 increased. In the light of these findings, this inducible CCM in cyanobacteria provided a good model for the study of the photosynthetic Ci utilization in the phototrophic microoganisms.
Resumo:
Based on a modified mean-field model, we calculate the Curie temperatures of Fe2+- and Co2+-doped diluted magnetic semiconductors (DMSs) and their dependence on the hole concentration. We find that the Curie temperatures increase with an increase in hole concentration and the relationship T(C)proportional to p(1/3) also approximately holds for Fe2+- and Co2+-doped systems with moderate hole concentration. For either low or high hole concentrations, however, the p(1/3) law is violated due to the anomalous magnetization of the Fe2+ and Co2+ ions, and the nonparabolic nature of the hole bands. Further, the values of T-C for Fe2+- and Co2+-doped DMSs are significantly higher than those for Mn2+-doped DMSs, due to the larger exchange interaction strength.
Resumo:
于G批量导入至Hzhangdi
Resumo:
Post-growth annealing was carried out on ZnO thin films grown by metal-organic chemical vapor deposition (MOCVD). The grain size of ZnO thin film increases monotonically with annealing temperature. The ZnO thin films were preferential to c-axis oriented after annealing as confirmed by Xray diffraction (XRD) measurements. Fourier transformation infrared transmission measurements showed that ZnO films grown at low temperature contains CO2 molecules after post-growth annealing. A two-step reaction process has been proposed to explain the formation mechanism of CO2, which indicates the possible chemical reaction processes during the metal-organic chemical vapor deposition of ZnO films.
Resumo:
介绍了近年来CO2置换开采天然气水合物技术的研究进展;论述了CO2与天然气水合物中CH4置换反应在热力学上的可能性;认为正确理解置换反应机理、探索新的反应技术并提高反应速率是置换开采技术走向产业化的关键。
This paper introduces the advancement in research on replacement of CH4 from hydrate with CO2, and discusses the thermodynamic feasibility of replacment reaction between CO2 and CH4 hydrate, and points out that correct understanding of the replacement mechanism, new reaction techniques and higher reaction rate will be the key to commercial application.
Resumo:
The effects of five metal catalysts (K, Na, Ca, Mg, and Fe) on CO2 gasification reactivity of fir char were studied using thermal gravimetric analysis. The degree of carbonization, crystal structure and morphology of char samples was characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The CO2 gasification reactivity of fir char was improved through the addition of metal catalysts, in the order K>Na>Ca>Fe>Mg. XRD analysis indicated that Na and Ca improved the formation of crystal structure, and that Mg enhanced the degree of carbon structure ordering. SEM analysis showed that spotted activation centers were distributed on the surface of char samples impregnated with catalysts. Moreover, a loose flake structure was observed on the surface of both K-char and Na-char. Finally, the kinetic parameters of CO2 gasification of char samples were calculated mathematically.