909 resultados para sensory perception and cognition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this chapter we outline a sensory-linguistic approach to the, study of reading skill development. We call this a sensory-linguistic approach because the focus of interest is on the relationship between basic sensory processing skills and the ability to extract efficiently the orthographic and phonological information available in text during reading. Our review discusses how basic sensory processing deficits are associated with developmental dyslexia, and how these impairments may degrade word-decoding skills. We then review studies that demonstrate a more direct relationship between sensitivity to particular types of auditory and visual stimuli and the normal development of literacy skills. Specifically, we suggest that the phonological and orthographic skills engaged while reading are constrained by the ability to detect and discriminate dynamic stimuli in the auditory and visual systems respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Speech perception routinely takes place in noisy or degraded listening environments, leading to ambiguity in the identity of the speech token. Here, I present one review paper and two experimental papers that highlight cognitive and visual speech contributions to the listening process, particularly in challenging listening environments. First, I survey the literature linking audiometric age-related hearing loss and cognitive decline and review the four proposed causal mechanisms underlying this link. I argue that future research in this area requires greater consideration of the functional overlap between hearing and cognition. I also present an alternative framework for understanding causal relationships between age-related declines in hearing and cognition, with emphasis on the interconnected nature of hearing and cognition and likely contributions from multiple causal mechanisms. I also provide a number of testable hypotheses to examine how impairments in one domain may affect the other. In my first experimental study, I examine the direct contribution of working memory (through a cognitive training manipulation) on speech in noise comprehension in older adults. My results challenge the efficacy of cognitive training more generally, and also provide support for the contribution of sentence context in reducing working memory load. My findings also challenge the ubiquitous use of the Reading Span test as a pure test of working memory. In a second experimental (fMRI) study, I examine the role of attention in audiovisual speech integration, particularly when the acoustic signal is degraded. I demonstrate that attentional processes support audiovisual speech integration in the middle and superior temporal gyri, as well as the fusiform gyrus. My results also suggest that the superior temporal sulcus is sensitive to intelligibility enhancement, regardless of how this benefit is obtained (i.e., whether it is obtained through visual speech information or speech clarity). In addition, I also demonstrate that both the cingulo-opercular network and motor speech areas are recruited in difficult listening conditions. Taken together, these findings augment our understanding of cognitive contributions to the listening process and demonstrate that memory, working memory, and executive control networks may flexibly be recruited in order to meet listening demands in challenging environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that self-generated stimuli are processed differently from externally generated stimuli. For example, many people have noticed since childhood that it is very difficult to make a self-tickling. In the auditory domain, self-generated sounds elicit smaller brain responses as compared to externally generated sounds, known as the sensory attenuation (SA) effect. SA is manifested in reduced amplitudes of evoked responses as measured through MEEG, decreased firing rates of neurons and a lower level of perceived loudness for self-generated sounds. The predominant explanation for SA is based on the idea that self-generated stimuli are predicted (e.g., the forward model account). It is the nature of their predictability that is crucial for SA. On the contrary, the sensory gating account emphasizes a general suppressive effect of actions on sensory processing, regardless of the predictability of the stimuli. Both accounts have received empirical support, which suggests that both mechanisms may exist. In chapter 2, three behavioural studies concerning the influence of motor activation on auditory perception were presented. Study 1 compared the effect of SA and attention in an auditory detection task and showed that SA was present even when substantial attention was paid to unpredictable stimuli. Study 2 compared the loudness perception of tones generated by others between Chinese and British participants. Compared to externally generated tones, a decrease in perceived loudness for others generated tones was found among Chinese but not among the British. In study 3, partial evidence was found that even when reading words that are related to action, auditory detection performance was impaired. In chapter 3, the classic SA effect of M100 suppression was replicated with MEG in study 4. With time-frequency analysis, a potential neural information processing sequence was found in auditory cortex. Prior to the onset of self-generated tones, there was an increase of oscillatory power in the alpha band. After the stimulus onset, reduced gamma power and alpha/beta phase locking were found. The three temporally segregated oscillatory events correlated with each other and with SA effect, which may be the underlying neural implementation of SA. In chapter 4, a TMS-MEG study was presented investigating the role of the cerebellum in adapting to delayed presentation of self-generated tones (study 5). It demonstrated that in sham stimulation condition, the brain can adapt to the delay (about 100 ms) within 300 trials of learning by showing a significant increase of SA effect in the suppression of M100, but not M200 component. Whereas after stimulating the cerebellum with a suppressive TMS protocol, the adaptation in M100 suppression disappeared and the pattern of M200 suppression reversed to M200 enhancement. These data support the idea that the suppressive effect of actions on auditory processing is a consequence of both motor driven sensory predictions and general sensory gating. The results also demonstrate the importance of neural oscillations in implementing SA effect and the critical role of the cerebellum in learning sensory predictions under sensory perturbation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate the sleep bruxism, malocclusions, orofacial dysfunctions and salivary levels of cortisol and alpha-amylase in asthmatic children. 108 7-9-yr-old children were selected from Policlinic Santa Teresinha Doutor Antonio Haddad Dib (asthmatics, n=53) and from public schools (controls, n=55), Piracicaba, SP, Brazil. Sleep bruxism diagnosis was confirmed by parental report of grinding sounds and the presence of shiny and polish facets on incisors and/or first permanent molars. The index of orthodontic treatment need was used for occlusion evaluation. Orofacial dysfunctions were evaluated using the nordic orofacial test-screening (NOT-S). Salivary cortisol and alpha-amylase were expressed as awakening response (AR), calculated as the difference between levels immediately after awakening and 30min after waking, and diurnal decline (DD), calculated as the difference between levels at 30min after waking and at bedtime. Data were analyzed using Shapiro-Wilk/Kolmogorov-Smirnov, Chi-square, unpaired t test/Mann-Whitney and paired t/Wilcoxon tests. Sleep bruxism was more prevalent in children with asthma than controls (47.2% vs. 27.3%, p<0.05). Asthmatics had higher scores of NOT-S total and interview (p<0.05). Dysfunctions on sensory function and chewing and swallowing were more frequent in asthmatics (p<0.05). Salivary cortisol AR on weekend was significantly higher for asthmatics (p<0.05). Salivary cortisol DD was significantly higher on weekday than weekend for controls (p<0.05). There were no significant differences in alpha-amylase values in and between groups. The presence of asthma in children was associated with sleep bruxism, negative perception of sensory, chewing and swallowing functions, and higher concentrations of salivary cortisol on weekend.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, 73 South American red wines (Vitis vinifera) from 5 varietals were classified based on sensory quality, retail price and antioxidant activity and characterised in relation to their phenolic composition. ORAC and DPPH assays were assessed to determine the antioxidant activity, and sensory analysis was conducted by seven professional tasters using the Wine Spirits Education Trust`s structured scales. The use of multivariate statistical techniques allowed the identification of wines with the best combination of sensory characteristics, price and antioxidant activity. The most favourable varieties were Malbec, Cabernet Sauvignon, and Syrah produced in Chile and Argentina. Conversely, Pinot Noir wines displayed the lowest sensory characteristics and antioxidant activity. These results suggest that the volatile compounds may be the main substances responsible for differentiating red wines on the basis of sensory evaluation. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensory analysis is one of the most suitable processes for measuring oxidative damage and determining the shelf-life of nuts, but it is an expensive and time-consuming methodology. Thus, our objective was to correlate sensory data and chemical markers obtained during the accelerated oxidation of Brazil nuts and to determine the chemical parameters values associated with the sensory shelf-life of the nuts as established by the consumers. Brazil nuts were kept at 80 A degrees C for 21 days. At intervals of 2 days, the oxidized odor of the samples was analyzed by nine trained panelists using a discriminative scale, and the oil was extracted to quantify the chemical parameters. A high (r > 0.95) and significant correlation (p < 0.05) was observed between the sensory data and the hydroperoxide concentration (PV), para-anisidine value (pAV), hexanal content, and alpha- and gamma-tocopherol concentrations. When compared with fresh samples, sensory identification of oxidized odor occurred on the 4th day, noticeably earlier than changes in chemical markers (12th day). Consumers rejected the nuts after 12 days of storage, which corresponded to PV = 18.8 meq kg(-1) oil, pAV = 7.68, hexanal = 48.95 mu mol 100 g(-1) oil, alpha-tocopherol = 15.01 mg kg(-1) oil, and gamma + beta-tocopherol = 73.88 mg kg(-1) oil. Our study suggests that simple spectrometric methods, such as PV and pAV, can be used to estimate the oxidative shelf-life of nuts based on sensory analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensory analysis is a precise and descriptive measuring technique to quantify human responses to stimuli. Odor, one of these stimuli, is basically the result of the interaction between a chemical stimulus and the olfactory receptor system, which can be described using a number of different dimensions and measures through different sensory tests: threshold, intensity and quality. To measure fragrance performance on the skin, these parameters are very important, but the main attribute to be evaluated is substantivity, thus the importance of the sensory scale chosen to measure perception, discriminate different intensities and determine the substantivity of the fragrance. Some studies comparing the labeled magnitude scale (LMS) with other magnitude scales and their derivations showed that the use of the LMS scale to measure fragrance intensity could semantically understand the intensity of the stimulus. Tests using this scale confirmed the applicability and efficiency of the LMS. PRACTICAL APPLICATIONS The objective of this article is to review the techniques used to measure odor and fragrance intensities applied on the skin. The review shows general sensory techniques and their goals, the newest olfactory mechanism and its contribution to sensory evaluation and which attributes should be considered to measure odor. Substantivity/retentivity or longevity can be regarded as the most important attributes if you want to measure fragrance performance on the skin. Past studies showed different scales tested to measure odor, and some of them demonstrated that the labeled magnitude scale is very suitable to measure fragrance on the skin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the addition of a potential probiotic culture of Lactobacillus paracasei and of the prebiotic fiber inulin on the texture profile and on the sensory evaluation of probiotic and synbiotic fresh cream-cheeses was monitored. Three cheese-making trials were prepared in quintuplicate, all supplemented with a Streptococcus thermophilus starter culture (T1, T2 and T3). L. paracasei subsp. paracasei was added to T1 and T2, and inulin, to T2. The instrumental texture profile was determined after 1, 7, 14 and 21 days of storage of the cheeses. Sensory evaluation was performed after 7 days of storage. The presence of Lactobacillus paracasei in cheeses T1 and T2 and of inulin in cheeses T2 did not alter the texture profile significantly. Cheeses T1 were the least preferred in the sensory evaluation and differed signifcantly from T2 and T3, due to acidic taste, according to panelists. On the other hand, T2 was the most preferred one, though not significantly different from T3. The addition of the prebiotic ingredient inulin to fresh cream cheese processed with a potentially probiotic Lactobacillus paracasei strain resulted in a product with appropriate features and with aggregated functional properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaching to interact with an object requires a compromise between the speed of the limb movement and the required end-point accuracy. The time it takes one hand to move to a target in a simple aiming task can be predicted reliably from Fitts' law, which states that movement time is a function of a combined measure of amplitude and accuracy constraints (the index of difficulty, ID). It has been assumed previously that Fitts' law is violated in bimanual aiming movements to targets of unequal ID. We present data from two experiments to show that this assumption is incorrect: if the attention demands of a bimanual aiming task are constant then the movements are well described by a Fitts' law relationship. Movement time therefore depends not only on ID but on other task conditions, which is a basic feature of Fitts' law. In a third experiment we show that eye movements are an important determinant of the attention demands in a bimanual aiming task. The results from the third experiment extend the findings of the first two experiments and show that bimanual aiming often relies on the strategic co-ordination of separate actions into a seamless behaviour. A number of the task specific strategies employed by the adult human nervous system were elucidated in the third experiment. The general strategic pattern observed in the hand trajectories was reflected by the pattern of eye movements recorded during the experiment. The results from all three experiments demonstrate that eye movements must be considered as an important constraint in bimanual aiming tasks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhythmic movements brought about by the contraction of muscles on one side of the body give rise to phase-locked changes in the excitability of the homologous motor pathways of the opposite limb. Such crossed facilitation should favour patterns of bimanual coordination in which homologous muscles are engaged simultaneously, and disrupt those in which the muscles are activated in an alternating fashion. In order to examine these issues, we obtained responses to transcranial magnetic stimulation (TMS), to stimulation of the cervicomedullary junction (cervicomedullary-evoked potentials, CMEPs), to peripheral nerve stimulation (H-reflexes and f-waves), and elicited stretch reflexes in the relaxed right flexor carpi radialis (FCR) muscle during rhythmic (2 Hz) flexion and extension movements of the opposite (left) wrist. The potentials evoked by TMS in right FCR were potentiated during the phases of movement in which the left FCR was most strongly engaged. In contrast, CMEPs were unaffected by the movements of the opposite limb. These results suggest that there was systematic variation of the excitability of the motor cortex ipsilateral to the moving limb. H-reflexes and stretch reflexes recorded in right FCR were modulated in phase with the activation of left FCR. As the f-waves did not vary in corresponding fashion, it appears that the phasic modulation of the H-reflex was mediated by presynaptic inhibition of Ia afferents. The observation that both H-reflexes and f-waves were depressed markedly during movements of the opposite indicates that there may also have been postsynaptic inhibition or disfacilitation of the largest motor units. Our findings indicate that the patterned modulation of excitability in motor pathways that occurs during rhythmic movements of the opposite limb is mediated primarily by interhemispheric interactions between cortical motor areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coordination of movement is governed by a coalition of constraints. The expression of these constraints ranges from the concrete—the restricted range of motion offered by the mechanical configuration of our muscles and joints; to the abstract—the difficulty that we experience in combining simple movements into complex rhythms. We seek to illustrate that the various constraints on coordination are complementary and inclusive, and the means by which their expression and interaction are mediated systematically by the integrative action of the central nervous system (CNS). Beyond identifying the general principles at the behavioural level that govern the mutual interplay of constraints, we attempt to demonstrate that these principles have as their foundation specific functional properties of the cortical motor systems. We propose that regions of the brain upstream of the motor cortex may play a significant role in mediating interactions between the functional representations of muscles engaged in sensorimotor coordination tasks. We also argue that activity in these ldquosupramotorrdquo regions may mediate the stabilising role of augmented sensory feedback.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The differences in spectral shape resolution abilities among cochlear implant ~CI! listeners, and between CI and normal-hearing ~NH! listeners, when listening with the same number of channels ~12!, was investigated. In addition, the effect of the number of channels on spectral shape resolution was examined. The stimuli were rippled noise signals with various ripple frequency-spacings. An adaptive 4IFC procedure was used to determine the threshold for resolvable ripple spacing, which was the spacing at which an interchange in peak and valley positions could be discriminated. The results showed poorer spectral shape resolution in CI compared to NH listeners ~average thresholds of approximately 3000 and 400 Hz, respectively!, and wide variability among CI listeners ~range of approximately 800 to 8000 Hz!. There was a significant relationship between spectral shape resolution and vowel recognition. The spectral shape resolution thresholds of NH listeners increased as the number of channels increased from 1 to 16, while the CI listeners showed a performance plateau at 4–6 channels, which is consistent with previous results using speech recognition measures. These results indicate that this test may provide a measure of CI performance which is time efficient and non-linguistic, and therefore, if verified, may provide a useful contribution to the prediction of speech perception in adults and children who use CIs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensory and sensorimotor gating deficits characterize both Tourette syndrome (TS) and schizophrenia. Premonitory urges (PU) in TS can be assessed with the University of Sao Paulo Sensory Phenomena Scale (USP-SPS) and the Premonitory Urge for Tics Scale (PUTS). In 40 subjects (TS: n = 18; healthy comparison subjects [HCS]: n = 22), we examined the relationship between PU scores and measures of sensory gating using the USP-SPS, PUTS, Sensory Gating Inventory (SGI), and Structured Interview for Assessing Perceptual Anomalies (SIAPA), as well symptom severity scales. SGI, but not SIAPA, scores were elevated in TS subjects (p < 0.0003). In TS subjects, USP-SPS and PUTS scores correlated significantly with each other, but not with the SGI or SIAPA; neither PU nor sensory gating scales correlated significantly with symptom severity. TS subjects endorse difficulties in sensory gating and the SGI may be valuable for studying these clinical phenomena.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rat airways exposure to Staphylococcal enterotoxin A (SEA) and B (SEB) induces marked neutrophil influx. Since sensory neuropeptides play important roles in cell infiltration, in this study we have investigated its contribution in triggering SEA- and SEB-induced pulmonary neutrophil infiltration. Male Wistar rats were exposed intratracheally with SEA (3 ng/trachea) or SEB (250 ng/trachea). Animals received different in vivo pretreatments, after which the neutrophil counts and levels of substance P and IL-1 in bronchoalveolar lavage fluid were evaluated. Alveolar macrophages and peritoneal mast cells were incubated with SEA and SEB to determine the IL-1 and TNF-alpha levels. Capsaicin pretreatment significantly reduced SEA- and SEB-induced neutrophil influx in bronchoalveolar lavage fluid, but this treatment was more effective to reduce SEA responses. Treatments with SR140333 (tachykinin NK(1) receptor antagonist) and SR48968 (tachykinin NK(2) receptor antagonist) decreased SEA-induced neutrophil influx, whereas SEB-induced responses were inhibited by SR140333 only. Cyproheptadine (histamine/5-hydroxytriptamine receptor antagonist) and MD 7222 (5-HT(3) receptor antagonist) reduced SEA- and SEB-induced neutrophil influx. The substance P and IL-1 levels in bronchoalveolar lavage fluid of SEA-exposed rats were significantly hi.-her than SEB. In addition, SEA (but not SEB) significantly released mast cell TNF-alpha. Increased production of TNF-alpha and IL-1 in alveolar macrophages was observed in response to SEA and SEB. In conclusion, sensory neuropeptides contribute significantly to SEA- and SEB-induced pulmonary neutrophil recruitment, but SEA requires in a higher extent the airways sensory innervation, and participation of mast cells and alveolar macrophage products. (C) 2009 Elsevier B.V. All rights reserved.