977 resultados para quantum confinement effects


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polaron cyclotron resonance (CR) has been studied in three modulation-doped GaAs/Al0.3Ga0.7As multiple quantum well structures in magnetic field up to 30 T. Large avoided-level-crossing splittings of the CR near the GaAs reststrahlen region, and smaller splittings in the region of the AlAs-like optical phonons of th AlGaAs barriers, are observed. Based on a comparison with a detailed theoretical calculation, the high frequency splitting, the magnitude of which increases with decreasing well width, is assigned to resonant polaron interactions with AlAs-like interface phonons.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A theoretical investigation of ballistic electron transport in a quantum wire with soft wall confinement is presented. A general method of the electron transmission calculation is proposed for structures with complicated geometries. The effects of the lateral guiding potential on ballistic transport are investigated using three soft wall confinement models and the results are compared with those obtained from the hard wall confinement approximation. It is shown that the calculated transmission coefficients are notably dependent on the lateral confining potential especially when the incident electron energy is larger than the energy of the second transverse mode. It is found that the transmission profile obtained from soft wall confinement models exhibits simpler resonance structures than that obtained from the hard wall confinement approximation. Our results suggest that only in the single-channel regime the hard wall confinement approximation can give reasonable results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

中科院基金,国家自然科学基金,国家攀登计划

Relevância:

40.00% 40.00%

Publicador:

Resumo:

 

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influence of the Indium segregation on the interface asymmetry in InGaAs/GaAs quantum wells have been studied by reflectance-difference spectroscopy (RDS). It is found that the anisotropy of the 2H1E (2HH --> 1E) transition is very sensitive to the degree of the interface asymmetry. Calculations taking into account indium segregation yield good agreement with the observed anisotropy structures. It demonstrates that the anisotropy intensity ratio of the 1L1E (1LH --> 1E) and 2H1E transitions measured by RDS can be used to characterize the interface asymmetry. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A detailed experimental study of electron cyclotron resonance (CR) has been carried out at 4.2 K in three modulation-doped GaAs/Al0.3Ga0.7As multiple quantum well samples in fields up to 30 T. A strong avoided-level-crossing splitting of the CR energies due to resonant magnetopolaron effects is observed for all samples near the GaAs reststrahlen region. Resonant splittings in the region of AlAs-like interface phonon modes of the barriers are observed in two samples with narrower well width and smaller doping concentration. The interaction between electrons and the AlAs interface optical phonon modes has been calculated for our specific sample structures in the framework of the memory-function formalism. The calculated results are in good agreement with the experimental results, which confirms our assignment of the observed splitting near the AlAs-like phonon region is due to the resonant magnetopolaron interaction of electrons in the wells with AlAs-like interface phonons. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this report, we have investigated the temperature and injection power dependent photoluminescence in self-assembled InAs/GaAs quantum dots (QDs) systems with low and high areal density, respectively. It was found that, for the high-density samples, state filling effect and abnormal temperature dependence were interacting. In particular, the injection power-induced variations were most obvious at the temperature interval where carriers transfer from small quantum dots (SQDs) to large quantum dots (LQDs). Such interplay effects could be explained by carrier population of SQDs relative to LQDs, which could be fitted well using a thermal carrier rate equation model. On the other hand, for the low density sample, an abnormal broadening of full width at half maximum (FWHM) was observed at the 15-100 K interval. In addition, the FWHM also broadened with increasing injection power at the whole measured temperature interval. Such peculiarities of low density QDs could be attributed to the exciton dephasing processes, which is similar to the characteristic of a single quantum dot. The compared interplay effects of high-and low-density QDs reflect the difference between an interacting and isolated QDs system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of the transition dipole moment function (TDMF) on the dynamics Of O-3 photodissociation in the Hartley band have been exploited by means of exact 3D time-dependent wavepacket method using the SW potential energy surface [J. Chem. Phys. 78 (1983) 7191]. The calculations show that the explicit inclusion of the TDMF results in slight uniform reductions for the intensities of recurrence peaks of the autocorrelation function and a slight broadening of the absorption spectrum, in comparison with the result where the TDMF is assumed to be constant. The pattern of recurrence structures of the autocorrelation function is essentially unaffected. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Quantum dashes are elongated quantum dots. Polarized edge-photovoltage and spontaneous emission spectroscopy are used to study the anisotropy of optical properties in 1.5μm InGaAsP and AlGaInAs-based quantum dash lasers. Strain, which causes TM-polarized transitions to be suppressed at the band edge, coupled with carrier confinement and dash shape leads to an enhancement of the optical properties for light polarized along the dash long axis, in excellent agreement with theoretical results. An analysis of the integrated facet and spontaneous emission rate with total current and temperature reveals that, in both undoped and p-doped InGaAsP-based quantum dash lasers at room temperature, the threshold current and its temperature dependence remain dominated by Auger recombination. We also identify two processes which can limit the output power and propose that the effects of the dopant in p-doped InGaAsP-based lasers dominate at low temperature but decrease with increasing temperature. A high threshold current density in undoped AlGaInAs-based quantum dash laser samples studied, which degrade rapidly at low temperature, is not due to intrinsic carrier recombination processes. 1.3μm GaAs-based quantum dots lasers have been widely studied, but there remains issues as to the nature of the electronic structure. Polarized edge-photovoltage spectroscopy is used to investigate the energy distribution and nature of the energy states in InAs/GaAs quantum dot material. A non-negligible TM-polarized transition, which is often neglected in calculations and analyses, is measured close to the main TE-polarized ground state transition. Theory is in very good agreement with the experimental results and indicates that the measured low-energy TM-polarized transition is due to the strong spatial overlap between the ground state electron and the light-hole component of a low-lying excited hole state. Further calculations suggest that the TM-polarized transition reduces at the band edge as the quantum dot aspect ratio decreases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Research has shown that fibre reinforced polymer (FRP) wraps are effective for strengthening concrete columns for increased axial and flexural load and deformation capacity, and this technique is now used around the world. The experimental study presented in this paper is focused on the mechanics of FRP confined concrete, with a particular emphasis on the influence of the unconfined concrete compressive strength on confinement effectiveness and hoop strain efficiency. An experimental programme was undertaken to study the compressive strength and stress-strain behaviour of unconfined and FRP confined concrete cylinders of different concrete strength but otherwise similar mix designs, aggregates, and constituents. This was accomplished by varying only the water-to-cement ratio during concrete mixing operations. Through the use of high-resolution digital image correlation to measure both axial and hoop strains, the observations yield insights into the mechanics of FRP confinement of concretes of similar composition but with varying unconfined concrete compressive strength.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A dynamical system with a damping that is quadratic in velocity is converted into the Hamiltonian format using a nonlinear transformation. Its quantum mechanical behaviour is then analysed by invoking the Gaussian effective potential technique. The method is worked out explicitly for the Duffing oscillator potential.