956 resultados para proteolytic cleavage
Resumo:
Cancer is one of the leading causes of death in the world. Despite this, a growing number of people are surviving the disease due to medical advancements and the development of numerous new therapies. Doxorubicin, a chemotherapeutic agent, is a widely-used and successful first-line anti-tumour treatment. However, the established toxic and deleterious effects of the drug on the cardiovascular system confer increased risk of congestive heart failure, thereby necessitating the use of reduced doxorubicin doses. In order to investigate how these events are initiated, mouse cardiomyocytes (HL-1) were treated in vitro with varying concentrations of doxorubicin (0.5-4.0 µmol/L). Following treatment (24h), a marked level of cell death was observed in comparison to untreated cardiomyocytes; the level of death appeared to correlate with the concentration of the drug used. Western blotting revealed the cleavage of full length Poly (ADP-ribose) polymerase (PARP) into 89 and 24kDa fragments, a process which is instrumental in triggering programmed cell death/apoptosis. Importantly, results suggested that this event may be independent of caspase 3 cleavage and thus activation. A number of previous studies have reported a functional role for both Mitofusin-2 (Mfn2) and NADPH oxidase 2 (Nox2) in the cardiotoxic response. Given that PARP cleavage is a validated indicator of cellular apoptosis, these results clearly indicate that this marker could be used in future studies when determining if depletion of the above proteins would cause a reduction in or eradicate the pro-apoptotic action of this agent on cardiomyocytes. Such investigations may lead to significant developments in ensuring that doxorubicin can achieve its full therapeutic anti-tumour potential without causing the subsequent deleterious effects on the cardiovascular system.
Resumo:
Phenyl and methyls (1) have found increasing interest in organic synthesis. They have been prepared from aldehydes or ketones (2) and selenols, from 1,1-bis(phenylseleno)-alkanes, and from 1,1,1-tris(seleno)-alkanes (5).
Resumo:
Tese de mestrado, Neurociências, Faculdade de Medicina, Universidade de Lisboa, 2016
Resumo:
A number of novel, water-stable redox-active cobalt complexes of the C-functionalized tripodal ligands tris(pyrazolyl)methane XC(pz)(3) (X = HOCH2, CH2OCH2Py or CH2OSO2Me) are reported along with their effects on DNA. The compounds were isolated as air-stable solids and fully characterized by IR and FIR spectroscopies, ESI-MS(+/-), cyclic voltammetry, controlled potential electrolysis, elemental analysis and, in a number of cases, also by single-crystal X-ray diffraction. They showed moderate cytotoxicity in vitro towards HCT116 colorectal carcinoma and HepG2 hepatocellular carcinoma human cancer cell lines. This viability loss is correlated with an increase of tumour cell lines apoptosis. Reactivity studies with biomolecules, such as reducing agents, H2O2, plasmid DNA and UV-visible titrations were also performed to provide tentative insights into the mode of action of the complexes. Incubation of Co(II) complexes with pDNA induced double strand breaks, without requiring the presence of any activator. This pDNA cleavage appears to be mediated by O-centred radical species.
Resumo:
The mammalian target of rapamycin complex 1 (mTORC1) is a highly conserved protein complex regulating key pathways in cell growth. Hyperactivation of mTORC1 is implicated in numerous cancers, thus making it a potential broad-spectrum chemotherapeutic target. Here, we characterized how mTORC1 responds to cell death induced by various anticancer drugs such rapamycin, etoposide, cisplatin, curcumin, staurosporine and Fas ligand. All treatments induced cleavage in the mTORC1 component, raptor, resulting in decreased raptor-mTOR interaction and subsequent inhibition of the mTORC1-mediated phosphorylation of downstream substrates (S6K and 4E-BP1). The cleavage was primarily mediated by caspase-6 and occurred at two sites. Mutagenesis at one of these sites, conferred resistance to cell death, indicating that raptor cleavage is important in chemotherapeutic apoptosis.
Resumo:
One of the most challenging tasks for a synthetic organic chemist today, is the development of chemo, regio, and stereoselective methodologies toward the total synthesis of macromolecules. r . The objective of my thesis was to develop methodologies towards this end. The first part of my project was to develop highly functionalized chirons from D-glucose, a cheap, chiral starting material, to be utilized in this capacity. The second part of the project dealt with modifying the carbon-carbon bond forming Suzuki reaction, which is utilized quite often as a means of combining molecular sub units in total synthesis applications. As previously stated the first area of the project was to develop high value chirons from D-glucose, but the mechanism of their formation was also investigated. The free radical initiated oxidative fragmentation of benzylidene acetals was investigated through the use of several test-case substrates in order to unravel the possible mechanistic pathways. This was performed by reacting the different acetals with N-bromosuccinimide and benzoyl peroxide in chlorobenzene at 70^C in all cases. Of the three mechanistic pathways discussed in the literature, it was determined, from the various reaction products obtained, that the fragmentation of the initial benzylic radical does not occur spontaneously but rather, oxidation proceeds to give the benzyl bromide, which then fragments via a polar pathway. It was also discovered that the regioselectivity of the fragmentation step could be altered through incorporation of an allylic system into the benzylidene acetal. This allows for the acquisition of a new set of densely functionalized. chiral, valuable synthetic intermediates in only a few steps and in high yields from a-Dglucose. The second part of the project was the utilization of the phosphonium salt room temperature ionic liquid tetradecyltrihexylphosphonium chloride (THPC) as an efficient reusable medium for the palladium catalyzed Suzuki cross-coupling reaction of aryl halides, including aryl chlorides, under mild conditions. The cross-coupling reactions were found to proceed in THPC containing small amounts of water and toluene using potassium phosphate and 1% Pd2(dba)3. Variously substituted iodobenzenes, including electron rich derivatives, reacted efficiently in THPC with a variety of arylboronic acids and afforded complete conversion within 1 hour at 50 ^C. The corresponding aryl bromides also reacted under these conditions with the addition of a catalytic amount of triphenylphosphine that allowed for complete conversion and high isolated yields. The reactions involving aryl chlorides were considerably slower, although the addition of triphenylphosphine and heating at 70 ^C allowed high conversion of electron deficient derivatives. Addition of water and hexane to the reaction products results in a triphasic system in which the top hexane phase contained the biaryl products, the palladium catalyst remained fully dissolved in the central THPC layer, while the inorganic salts were extracted into the lower aqueous phase. The catalyst was then recycled by removing the top and bottom layers and adding the reagents to the ionic liquid which was heated again at 50 ^C; resulting in complete turnover of iodobenzene. Repetition of this procedure gave the biphenyl product in 82-97% yield (repeated five times) for both the initial and recycled reaction sequences.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Les effets bénéfiques des lipoprotéines de haute densité (HDL) contre l'athérosclérose ont été attribués, en grande partie, à leur composante protéique majeure, l'apolipoprotéine A-I (apoA-I). Cependant, il y a des indications que l'apoA-I peut être dégradée par des protéases localisées dans les plaques athérosclérotiques humaines, ce qui pourrait réduire l'efficacité des thérapies basées sur les HDL sous certaines conditions. Nous décrivons ici le développement et l'utilisation d'une nouvelle sonde bioactivatable fluorescente dans le proche infrarouge, apoA-I-Cy5.5, pour l'évaluation des activités protéolytiques spécifiques qui dégradent l'apoA-I in vitro, in vivo et ex vivo. La fluorescence basale de la sonde est inhibée par la saturation du fluorophore Cy5.5 sur la protéine apoA-I, et la fluorescence émise par le Cy5.5 (proche infrarouge) est révélée après clivage de la sonde. La protéolyse in vitro de l'apoA-I par des protéases a montré une augmentation de la fluorescence allant jusqu'à 11 fois (n=5, P ≤ 0.05). En utilisant notre nouvelle sonde apoA-I-Cy5.5 nous avons pu quantifier les activités protéolytiques d'une grande variété de protéases, incluant des sérines (chymase), des cystéines (cathepsine S), et des métalloprotéases (MMP-12). En outre, nous avons pu détecter l'activation de la sonde apoA-I-Cy5.5 sur des sections d'aorte de souris athérosclérotiques par zymographie in situ et avons observé qu'en présence d'inhibiteurs de protéases à large spectre, la sonde pourrait être protégée des activités protéolytiques des protéases (-54%, n=6, P ≤ 0,001). L'infusion in vivo de la sonde apoA-I-Cy5.5 dans les souris athérosclérotiques (Ldlr -/--Tg (apoB humaine)) a résulté en utilisant un système d'imagerie moléculaire combinant la fluorescence moléculaire tomographique et la résonance magnétique,en un signal de fluorescence dans l'aorte plus important que celui dans les aortes des souris de type sauvage C57Bl/6J (CTL). Les mesures in vivo ont été confirmées par l'imagerie ex vivo de l'aorte qui a indiqué une augmentation de 5 fois du signal fluorescent dans l'aorte des souris ATX (n=5) par rapport à l'aorte des souris (n=3) CTL (P ≤ 0,05). L'utilisation de cette sonde pourrait conduire à une meilleure compréhension des mécanismes moléculaires qui sous-tendent le développement et la progression de l'athérosclérose et l'amélioration des stratégies thérapeutiques à base de HDL.
Resumo:
Severe acute respiratory syndrome (SARS) coronavirus (SCoV) spike (S) protein is the major surface antigen of the virus and is responsible for receptor binding and the generation of neutralizing antibody. To investigate SCoV S protein, full-length and individual domains of S protein were expressed on the surface of insect cells and were characterized for cleavability and reactivity with serum samples obtained from patients during the convalescent phase of SARS. S protein could be cleaved by exogenous trypsin but not by coexpressed furin, suggesting that the protein is not normally processed during infection. Reactivity was evident by both flow cytometry and Western blot assays, but the pattern of reactivity varied according to assay and sequence of the antigen. The antibody response to SCoV S protein involves antibodies to both linear and conformational epitopes, with linear epitopes associated with the carboxyl domain and conformational epitopes associated with the amino terminal domain. Recombinant SCoV S protein appears to be a suitable antigen for the development of an efficient and sensitive diagnostic test for SARS, but our data suggest that assay format and choice of S antigen are important considerations.
Resumo:
The reaction of the redox-active ligand, Hpyramol (4-methyl-2-N-(2-pyridylmethyl)aminophenol) with K2PtCl4 yields monofunctional square-planar [Pt(pyrimol)Cl], PtL-Cl, which was structurally characterised by single-crystal X-ray diffraction and NMR spectroscopy. This compound unexpectedly cleaves supercoiled double-stranded DNA stoichiometrically and oxidatively, in a non-specific manner without any external reductant added, under physiological conditions. Spectro-electrochemical investigations of PtL-Cl were carried out in comparison with the analogue CuL-Cl as a reference compound. The results support a phenolate oxidation, generating a phenoxyl radical responsible for the ligand-based DNA cleavage property of the title compounds. Time-dependent in vitro cytotoxicity assays were performed with both PtL-Cl and CuL-Cl in various cancer cell lines. The compound CuL-Cl overcomes cisplatin-resistance in ovarian carcinoma and mouse leukaemia cell lines, with additional activity in some other cells. The platinum analogue, PtL-Cl also inhibits cell-proliferation selectively. Additionally, cellular-uptake studies performed for both compounds in ovarian carcinoma cell lines showed that significant amounts of Pt and Cu were accumulated in the A2780 and A2780R cancer cells. The conformational and structural changes induced by PtL-Cl and CuL-Cl on calf thymus DNA and phi X174 supercoiled phage DNA at ambient conditions were followed by electrophoretic mobility assay and circular dichroism spectroscopy. The compounds induce extensive DNA degradation and unwinding, along with formation of a monoadduct at the DNA minor groove. Thus, hybrid effects of metal-centre variation, multiple DNA-binding modes and ligand-based redox activity towards cancer cell-growth inhibition have been demonstrated. Finally, reactions of PtL-Cl with DNA model bases (9-Ethylguanine and 5'-GMP) followed by NMR and MS showed slow binding at Guanine-N7 and for the double stranded self complimentary oligonucleotide d(GTCGAC)(2) in the minor groove.
Resumo:
Electrochemical reduction of the triangular clusters [Os-3(CO)(10)(alpha-dimine)] (alpha-dimine = 2,2'-bipyridine (bpy), 2,2'-bipyrimidine (bpym)) and [Os-3(CO)(10)(mu-bpym) ReBr(CO)(3)] produces primarily the corresponding radical anions. Their stability is strongly determined by the pi acceptor ability of the reducible alpha-dimine ligand, which decreases in the order mu-bpym > bpym >> bpy. Along this series, increasing delocalisation of the odd electron density in the radical anion over the Os(alpha-dimine) chelate ring causes weakening of the axial (CO)(4)Os-Os(CO)(2)(alpha-dimine) bond and its facile cleavage for alpha-diimine = bpy. In contrast, the cluster radical anion is inherently stable for the bridging bpym ligand, the strongest pi-acceptor in the studied series. In the absence of the partial delocalisation of the unpaired electron over the Re( bpym) chelate bond, the Os-3-core of the radical anion remains intact only at low temperatures. Subsequent one-electron reduction of [Os-3(CO)(10)(bpym)](center dot-) at T = 223 K gives the open-triosmium core (= Os-3*) dianion, [Os-3*(CO)(10)(bpym)](2-). Its oxidation leads to the recovery of parent [Os-3(CO)(10)( bpym)]. At room temperature, [Os-3*( CO)(10)(bpym)](2-) is formed along a two-electron (ECE) reduction path. The chemical step (C) results in the formation of an open- core radical anion that is directly reducible at the cathodic potential of the parent cluster in the second electrochemical (E) step. In weakly coordinating tetrahydrofuran, [Os-3*(CO)(10)( bpym)](2-) rapidly attacks yet non- reduced parent cluster molecules, producing the relatively stable open- core dimer [Os-3*(CO)(10)(bpym)](2)(2-) featuring two open- triangle cluster moieties connected with an ( bpym) Os - Os( bpym) bond. In butyronitrile, [Os-3*( CO)(10)(bpym)](2-) is stabilised by the solvent and the dimer [Os-3*(CO)(10)(bpym)](2)(2-) is then mainly formed by reoxidation of the dianion on reverse potential scan. The more reactive cluster [Os-3(CO)(10)(bpy)] follows the same reduction path, as supported by spectroelectrochemical results and additional valuable evidence obtained from cyclic voltammetric scans. The ultimate process in the reduction mechanism is fragmentation of the cluster core triggered by the reduction of the dimer [Os-3*(CO)(10)(alpha- diimine)](2)(2-). The products formed are [Os-2(CO)(8)](2-) and {Os(CO)(2)(alpha- diimine)}(2). The latter dinuclear fragments constitute a linear polymeric chain [Os( CO)(2)(alpha-dimine)] n that is further reducible at the alpha-dimine ligands. For alpha-dimine = bpy, the charged polymer is capable of reducing carbon dioxide. The electrochemical opening of the triosmium core in the [Os-3( CO)(10)(alpha-dimine)] clusters exhibits several common features with their photochemistry. The same Os-alpha-dimine bond dissociates in both cases but the intimate mechanisms are different.
Resumo:
The coordination behavior of pyridylmethylthioether type of organic moieties having N2S2 donor set [L-1=1,2-bis(2-pyridylmethylthio)ethane, L-2 = 1,3-bis(2-pyridylmethyl-thio)propane and L-3 = 1,4-bis(2-pyridylmethylthio)butane] with copper(II) chloride and copper(II) bromide have been studied in different chemical environments. Copper(II) chloride assisted C-S bond cleavage of the organic moieties leading to the formation of copper(II) picolinate derivatives, whereas, under similar experimental conditions, no C-S bond cleavage was observed in the reaction with copper(II) bromide. The resulted copper(II) complexes isolated from the different mediums have been characterized by spectroscopic and X-ray crystallographic tools.