941 resultados para precipitation gradient
Resumo:
A sensitive and selective ultra-high performance liquid chromatography (UHPLC) tandem mass spectrometry (MS/MS) method was developed for the fast quantification of ten psychotropic drugs and metabolites in human plasma for the needs of our laboratory (amisulpride, asenapine, desmethyl-mirtazapine, iloperidone, mirtazapine, norquetiapine, olanzapine, paliperidone, quetiapine and risperidone). Stable isotope-labeled internal standards were used for all analytes, to compensate for the global method variability, including extraction and ionization variations. Sample preparation was performed by generic protein precipitation with acetonitrile. Chromatographic separation was achieved in less than 3.0min on an Acquity UPLC BEH Shield RP18 column (2.1mm×50mm; 1.7μm), using a gradient elution of 10mM ammonium formate buffer pH 3.0 and acetonitrile at a flow rate of 0.4ml/min. The compounds were quantified on a tandem quadrupole mass spectrometer operating in positive electrospray ionization mode, using multiple reaction monitoring. The method was fully validated according to the latest recommendations of international guidelines. Eight point calibration curves were used to cover a large concentration range 0.5-200ng/ml for asenapine, desmethyl-mirtazapine, iloperidone, mirtazapine, olanzapine, paliperidone and risperidone, and 1-1500ng/ml for amisulpride, norquetiapine and quetiapine. Good quantitative performances were achieved in terms of trueness (93.1-111.2%), repeatability (1.3-8.6%) and intermediate precision (1.8-11.5%). Internal standard-normalized matrix effects ranged between 95 and 105%, with a variability never exceeding 6%. The accuracy profiles (total error) were included in the acceptance limits of ±30% for biological samples. This method is therefore suitable for both therapeutic drug monitoring and pharmacokinetic studies.
Resumo:
Raltegravir (RAL), maraviroc (MVC), darunavir (DRV), and etravirine (ETV) are new antiretroviral agents with significant potential for drug interactions. This work describes a sensitive and accurate liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of plasma drug levels. Single-step extraction of RAL, MVC, DRV, ETV and RTV from plasma (100 microl) is performed by protein precipitation using 600 microl of acetonitrile, after the addition of 100 microl darunavir-d(9) (DRV-d(9)) at 1000 ng/ml in MeOH/H(2)O 50/50 as internal standard (I.S.). The mixture is vortexed, sonicated for 10 min, vortex-mixed again and centrifuged. An aliquot of supernatant (150 microl) is diluted 1:1 with a mixture of 20 mM ammonium acetate/MeOH 40/60 and 10 microl is injected onto a 2.1 x 50 mm Waters Atlantis-dC18 3 microm analytical column. Chromatographic separations are performed using a gradient program with 2 mM ammonium acetate containing 0.1% formic acid and acetonitrile with 0.1% formic acid. Analytes quantification is performed by electrospray ionisation-triple quadrupole mass spectrometry using the selected reaction monitoring detection in the positive mode. The method has been validated over the clinically relevant concentrations ranging from 12.5 to 5000 ng/ml, 2.5 to 1000 ng/ml, 25 to 10,000 ng/ml, 10 to 4000 ng/ml, and 5 to 2000 ng/ml for RAL, MRV, DRV, ETV and RTV, respectively. The extraction recovery for all antiretroviral drugs is always above 91%. The method is precise, with mean inter-day CV% within 5.1-9.8%, and accurate (range of inter-day deviation from nominal values -3.3 to +5.1%). In addition our method enables the simultaneous assessment of raltegravir-glucuronide. This is the first analytical method allowing the simultaneous assay of antiretroviral agents targeted to four different steps of HIV replication. The proposed method is suitable for the Therapeutic Drug Monitoring Service of these new regimen combinations administered as salvage therapy to patients having experienced treatment failure, and for whom exposure, tolerance and adherence assessments are critical.
Resumo:
Morphogen gradients infer cell fate as a function of cellular position. Experiments in Drosophila embryos have shown that the Bicoid (Bcd) gradient is precise and exhibits some degree of scaling. We present experimental results on the precision of Bcd target genes for embryos with a single, double or quadruple dose of bicoid demonstrating that precision is highest at mid-embryo and position dependent, rather than gene dependent. This confirms that the major contribution to precision is achieved already at the Bcd gradient formation. Modeling this dynamic process, we investigate precision for inter-embryo fluctuations in different parameters affecting gradient formation. Within our modeling framework, the observed precision can only be achieved by a transient Bcd profile. Studying different extensions of our modeling framework reveals that scaling is generally position dependent and decreases toward the posterior pole. Our measurements confirm this trend, indicating almost perfect scaling except for anterior most expression domains, which overcompensate fluctuations in embryo length.
Resumo:
Uplift gradients can provide the location of highly strained zones, which can be considered to be seismic. The Turan block (Central Asia) contains zones with high gradient of uplift velocities, above the threshold 0.04mm km-1year-1. Some of these zones are associated with important seismic activity and others are not correlated with any recent important recorded earthquakes, however, recent faults scarps as well as diverted rivers may indicate a recent tectonic activity. This threshold of gradient is probably a significant rheologic property of the upper crust. On the basis of these considerations the Uzboy river area is proposed as a potential high seismic hazard zone.
Resumo:
When dealing with nonlinear blind processing algorithms (deconvolution or post-nonlinear source separation), complex mathematical estimations must be done giving as a result very slow algorithms. This is the case, for example, in speech processing, spike signals deconvolution or microarray data analysis. In this paper, we propose a simple method to reduce computational time for the inversion of Wiener systems or the separation of post-nonlinear mixtures, by using a linear approximation in a minimum mutual information algorithm. Simulation results demonstrate that linear spline interpolation is fast and accurate, obtaining very good results (similar to those obtained without approximation) while computational time is dramatically decreased. On the other hand, cubic spline interpolation also obtains similar good results, but due to its intrinsic complexity, the global algorithm is much more slow and hence not useful for our purpose.
Resumo:
While 3D thin-slab coronary magnetic resonance angiography (MRA) has traditionally been performed using a Cartesian acquisition scheme, spiral k-space data acquisition offers several potential advantages. However, these strategies have not been directly compared in the same subjects using similar methodologies. Thus, in the present study a comparison was made between 3D coronary MRA using Cartesian segmented k-space gradient-echo and spiral k-space data acquisition schemes. In both approaches the same spatial resolution was used and data were acquired during free breathing using navigator gating and prospective slice tracking. Magnetization preparation (T(2) preparation and fat suppression) was applied to increase the contrast. For spiral imaging two different examinations were performed, using one or two spiral interleaves, during each R-R interval. Spiral acquisitions were found to be superior to the Cartesian scheme with respect to the signal-to-noise ratio (SNR) and contrast-to-noise-ratio (CNR) (both P < 0.001) and image quality. The single spiral per R-R interval acquisition had the same total scan duration as the Cartesian acquisition, but the single spiral had the best image quality and a 2.6-fold increase in SNR. The double-interleaf spiral approach showed a 50% reduction in scanning time, a 1.8-fold increase in SNR, and similar image quality when compared to the standard Cartesian approach. Spiral 3D coronary MRA appears to be preferable to the Cartesian scheme. The increase in SNR may be "traded" for either shorter scanning times using multiple consecutive spiral interleaves, or for enhanced spatial resolution.
Resumo:
OBJECTIVE: Our objective was to compare two state-of-the-art coronary MRI (CMRI) sequences with regard to image quality and diagnostic accuracy for the detection of coronary artery disease (CAD). SUBJECTS AND METHODS: Twenty patients with known CAD were examined with a navigator-gated and corrected free-breathing 3D segmented gradient-echo (turbo field-echo) CMRI sequence and a steady-state free precession sequence (balanced turbo field-echo). CMRI was performed in a transverse plane for the left coronary artery and a double-oblique plane for the right coronary artery system. Subjective image quality (1- to 4-point scale, with 1 indicating excellent quality) and objective image quality parameters were independently determined for both sequences. Sensitivity, specificity, and accuracy for the detection of significant (> or = 50% diameter) coronary artery stenoses were determined as defined in invasive catheter X-ray coronary angiography. RESULTS: Subjective image quality was superior for the balanced turbo field-echo approach (1.8 +/- 0.9 vs 2.3 +/- 1.0 for turbo field-echo; p < 0.001). Vessel sharpness, signal-to-noise ratio, and contrast-to-noise ratio were all superior for the balanced turbo field-echo approach (p < 0.01 for signal-to-noise ratio and contrast-to-noise ratio). Of the 103 segments, 18% of turbo field-echo segments and 9% of balanced turbo field-echo segments had to be excluded from disease evaluation because of insufficient image quality. Sensitivity, specificity, and accuracy for the detection of significant coronary artery stenoses in the evaluated segments were 92%, 67%, 85%, respectively, for turbo field-echo and 82%, 82%, 81%, respectively, for balanced turbo field-echo. CONCLUSION: Balanced turbo field-echo offers improved image quality with significantly fewer nondiagnostic segments when compared with turbo field-echo. For the detection of CAD, both sequences showed comparable accuracy for the visualized segments.
Resumo:
Upward migration of plant species due to climate change has become evident in several European mountain ranges. It is still, however, unclear whether certain plant traits increase the probability that a species will colonize mountain summits or vanish, and whether these traits differ with elevation. Here, we used data from a repeat survey of the occurrence of plant species on 120 summits, ranging from 2449 to 3418 m asl, in south-eastern Switzerland to identify plant traits that increase the probability of colonization or extinction in the 20th century. Species numbers increased across all plant traits considered. With some traits, however, numbers increased proportionally more. The most successful colonizers seemed to prefer warmer temperatures and well-developed soils. They produced achene fruits and/or seeds with pappus appendages. Conversely, cushion plants and species with capsule fruits were less efficient as colonizers. Observed changes in traits along the elevation gradient mainly corresponded to the natural distribution of traits. Extinctions did not seem to be clearly related to any trait. Our study showed that plant traits varied along both temporal and elevational gradients. While seeds with pappus seemed to be advantageous for colonization, most of the trait changes also mirrored previous gradients of traits along elevation and hence illustrated the general upward migration of plant species. An understanding of the trait characteristics of colonizing species is crucial for predicting future changes in mountain vegetation under climate change.
Resumo:
In Amazonia, topographical variations in soil and forest structure within "terra-firme" ecosystems are important factors correlated with terrestrial invertebrates' distribution. The objective of this work was to assess the effects of soil clay content and slope on ant species distribution over a 25 km² grid covering the natural topographic continuum. Using three complementary sampling methods (sardine baits, pitfall traps and litter samples extracted in Winkler sacks), 300 subsamples of each method were taken in 30 plots distributed over a wet tropical forest in the Ducke Reserve (Manaus, AM, Brazil). An amount of 26,814 individuals from 11 subfamilies, 54 genera, 85 species and 152 morphospecies was recorded (Pheidole represented 37% of all morphospecies). The genus Eurhopalothrix was registered for the first time for the reserve. Species number was not correlated with slope or clay content, except for the species sampled from litter. However, the Principal Coordinate Analysis indicated that the main pattern of species composition from pitfall and litter samples was related to clay content. Almost half of the species were found only in valleys or only on plateaus, which suggests that most of them are habitat specialists. In Central Amazonia, soil texture is usually correlated with vegetation structure and moisture content, creating different microhabitats, which probably account for the observed differences in ant community structure.
Resumo:
The objective of this work was to elevate gradient effect on diversity of Collembola, in a temperate forest on the northeast slope of Iztaccíhuatl Volcano, Mexico. Four expeditions were organized from November 2003 to August 2004, at four altitudes (2,753, 3,015, 3,250 and 3,687 m a.s.l.). In each site, air temperature, CO2 concentration, humidity, and terrain inclination were measured. The influence of abiotic factors on faunal composition was evaluated, at the four collecting sites, with canonical correspondence analyses (CCA). A total of 24,028 specimens were obtained, representing 12 families, 44 genera and 76 species. Mesaphorura phlorae, Proisotoma ca. tenella and Parisotoma ca. notabilis were the most abundant species. The highest diversity and evenness were recorded at 3,250 m (H' = 2.85; J' = 0.73). Canonical analyses axes 1 and 2 of the CCA explained 67.4% of the variance in species composition, with CO2 and altitude best explaining axis 1, while slope and humidity were better correlated to axis 2. The results showed that CO2 is an important factor to explain Collembola species assemblage, together with slope and humidity.
Resumo:
Daily precipitation is recorded as the total amount of water collected by a rain-gauge in 24 h. Events are modelled as a Poisson process and the 24 h precipitation by a Generalised Pareto Distribution (GPD) of excesses. Hazard assessment is complete when estimates of the Poisson rate and the distribution parameters, together with a measure of their uncertainty, are obtained. The shape parameter of the GPD determines the support of the variable: Weibull domain of attraction (DA) corresponds to finite support variables as should be for natural phenomena. However, Fréchet DA has been reported for daily precipitation, which implies an infinite support and a heavy-tailed distribution. Bayesian techniques are used to estimate the parameters. The approach is illustrated with precipitation data from the Eastern coast of the Iberian Peninsula affected by severe convective precipitation. The estimated GPD is mainly in the Fréchet DA, something incompatible with the common sense assumption of that precipitation is a bounded phenomenon. The bounded character of precipitation is then taken as a priori hypothesis. Consistency of this hypothesis with the data is checked in two cases: using the raw-data (in mm) and using log-transformed data. As expected, a Bayesian model checking clearly rejects the model in the raw-data case. However, log-transformed data seem to be consistent with the model. This fact may be due to the adequacy of the log-scale to represent positive measurements for which differences are better relative than absolute
Resumo:
From 6 to 8 November 1982 one of the most catastrophic flash-flood events was recorded in the Eastern Pyrenees affecting Andorra and also France and Spain with rainfall accumulations exceeding 400 mm in 24 h, 44 fatalities and widespread damage. This paper aims to exhaustively document this heavy precipitation event and examines mesoscale simulations performed by the French Meso-NH non-hydrostatic atmospheric model. Large-scale simulations show the slow-evolving synoptic environment favourable for the development of a deep Atlantic cyclone which induced a strong southerly flow over the Eastern Pyrenees. From the evolution of the synoptic pattern four distinct phases have been identified during the event. The mesoscale analysis presents the second and the third phase as the most intense in terms of rainfall accumulations and highlights the interaction of the moist and conditionally unstable flows with the mountains. The presence of a SW low level jet (30 m s-1) around 1500 m also had a crucial role on focusing the precipitation over the exposed south slopes of the Eastern Pyrenees. Backward trajectories based on Eulerian on-line passive tracers indicate that the orographic uplift was the main forcing mechanism which triggered and maintained the precipitating systems more than 30 h over the Pyrenees. The moisture of the feeding flow mainly came from the Atlantic Ocean (7-9 g kg-1) and the role of the Mediterranean as a local moisture source was very limited (2-3 g kg-1) due to the high initial water vapour content of the parcels and the rapid passage over the basin along the Spanish Mediterranean coast (less than 12 h).
Resumo:
Abstract
Resumo:
PURPOSE: To improve the traditional Nyquist ghost correction approach in echo planar imaging (EPI) at high fields, via schemes based on the reversal of the EPI readout gradient polarity for every other volume throughout a functional magnetic resonance imaging (fMRI) acquisition train. MATERIALS AND METHODS: An EPI sequence in which the readout gradient was inverted every other volume was implemented on two ultrahigh-field systems. Phantom images and fMRI data were acquired to evaluate ghost intensities and the presence of false-positive blood oxygenation level-dependent (BOLD) signal with and without ghost correction. Three different algorithms for ghost correction of alternating readout EPI were compared. RESULTS: Irrespective of the chosen processing approach, ghosting was significantly reduced (up to 70% lower intensity) in both rat brain images acquired on a 9.4T animal scanner and human brain images acquired at 7T, resulting in a reduction of sources of false-positive activation in fMRI data. CONCLUSION: It is concluded that at high B(0) fields, substantial gains in Nyquist ghost correction of echo planar time series are possible by alternating the readout gradient every other volume.