897 resultados para performance test
Resumo:
Load bearing Light Gauge Steel Frame (LSF) walls are commonly made of conventional lipped channel sections and gypsum plasterboards. Recently, innovative steel sections such as hollow flange channel sections have been proposed as studs in LSF wall frames with a view to improve their fire resistance ratings. A series of full scale fire tests was then undertaken to investigate the fire performance of the new LSF wall systems under standard fire conditions. Test wall frames made of hollow flange section studs were lined with fire resistant gypsum plasterboards on both sides, and were subjected to increasing temperatures as given by the standard fire curve on one side. Both uninsulated and cavity insulated walls were tested with varying load ratios from 0.2 to 0.6. This paper presents the details of this experimental study on the fire performance of LSF walls and the results. Test results showed that the walls made of the new hollow flange channel section studs have a superior fire performance in comparison to that of lipped channel section stud walls. They also showed that the fire performance of cavity insulated walls was inferior to that of uninsulated walls. The reasons for this fire behaviour are described in this paper.
Resumo:
This paper focuses on the use of externally bonded Carbon Fiber Reinforced Polymer (CFRP) materials to strengthen steel plates subjected to compression. A fully slender steel section was selected in this test programme. CFRP strengthened steel plates and non strengthened plates were tested to fail under compressive load. The middle part of the strut was strengthened using CFRP sheet. The length of the strengthened zone was varied. Eight specimens were tested in this test programme. The test results showed a significant strength gain of 47% and delaying of lateral torsional buckling failure mode of strengthened members. This study confirms that there is great potential to increase the short term performance of CFRP strengthened steel structure under axial compression.
Resumo:
This paper uses finite element techniques to investigate the performance of buried tunnels subjected to surface blasts incorporating fully coupled Fluid Structure Interaction and appropriate material models which simulate strain rate effects. Modelling techniques are first validated against existing experimental results and then used to treat the blast induced shock wave propagation and tunnel response in dry and saturated sands. Results show that the tunnel buried in saturated sand responds earlier than that in dry sand. Tunnel deformations decrease with distance from explosive in both sands, as expected. In the vicinity of the explosive, the tunnel buried in saturated sand suffered permanent deformation in both axial and circumferential directions, whereas the tunnel buried in dry sand recovered from most of the axial deformation. Overall, response of the tunnel in saturated sand is more severe for a given blast event and shows the detrimental effect of pore water on the blast response of buried tunnels. The validated modelling techniques developed in this paper can be used to investigate the blast response of tunnels buried in dry and saturated sands.
Resumo:
The safe working lifetime of a structure in a corrosive or other harsh environment is frequently not limited by the material itself but rather by the integrity of the coating material. Advanced surface coatings are usually crosslinked organic polymers such as epoxies and polyurethanes which must not shrink, crack or degrade when exposed to environmental extremes. While standard test methods for environmental durability of coatings have been devised, the tests are structured more towards determining the end of life rather than in anticipation of degradation. We have been developing prognostic tools to anticipate coating failure by using a fundamental understanding of their degradation behaviour which, depending on the polymer structure, is mediated through hydrolytic or oxidation processes. Fourier transform infrared spectroscopy (FTIR) is a widely-used laboratory technique for the analysis of polymer degradation and with the development of portable FTIR spectrometers, new opportunities have arisen to measure polymer degradation non-destructively in the field. For IR reflectance sampling, both diffuse (scattered) and specular (direct) reflections can occur. The complexity in these spectra has provided interesting opportunities to study surface chemical and physical changes during paint curing, service abrasion and weathering, but has often required the use of advanced statistical analysis methods such as chemometrics to discern these changes. Results from our studies using this and related techniques and the technical challenges that have arisen will be presented.
Resumo:
Recent research at the Queensland University of Technology has investigated the structural and thermal behaviour of load bearing Light gauge Steel Frame (LSF) wall systems made of 1.15 mm G500 steel studs and varying plasterboard and insulation configurations (cavity and external insulation) using full scale fire tests. Suitable finite element models of LSF walls were then developed and validated by comparing with test results. In this study, the validated finite element models of LSF wall panels subject to standard fire conditions were used in a detailed parametric study to investigate the effects of important parameters such as steel grade and thickness, plasterboard screw spacing, plasterboard lateral restraint, insulation materials and load ratio on their performance under standard fire conditions. Suitable equations were proposed to predict the time–temperature profiles of LSF wall studs with eight different plasterboard-insulation configurations, and used in the finite element analyses. Finite element parametric studies produced extensive fire performance data for the LSF wall panels in the form of load ratio versus time and critical hot flange (failure) temperature curves for eight wall configurations. This data demonstrated the superior fire performance of externally insulated LSF wall panels made of different steel grades and thicknesses. It also led to the development of a set of equations to predict the important relationship between the load ratio and the critical hot flange temperature of LSF wall studs. Finally this paper proposes a simplified method to predict the fire resistance rating of LSF walls based on the two proposed set of equations for the load ratio–hot flange temperature and the time–temperature relationships.
Resumo:
Organizational learning has been studied as a key factor in firm performance and internationalization. Moving beyond the past emphasis on market learning, we develop a more complete explanation of learning, its relationship to innovation, and their joint effect on early internationalization. We theorize that, driven by the founders’ international vision, early internationalizing firms employ a dual subsystem of dynamic capabilities: a market subsystem consisting of market-focused learning capability and marketing capability, and a socio-technical subsystem comprised of network learning capability and internally focused learning capability. We argue that innovation mediates the proposed relationship between the dynamic capability structure and early internationalization. We conduct case studies to develop the conceptual framework and test it in a field survey of early internationalizing firms from Australia and the United States. Our findings indicate a complex interplay of capabilities driving innovation and early internationalization. We provide theoretical and practical implications and offer insights for future research.
Resumo:
The importance of repair, maintenance, minor alteration, and addition (RMAA) works is increasing in many built societies. When the volume of RMAA works increases, the occurrence of RMAA accidents also increases. Safety of RMAA works deserves more attention; however, research in this important topic remains limited. Safety climate is considered a key factor that influences safety performance. The present study aims to determine the relationships between safety climate and safety performance of RMAA works, thereby offering recommendations on improving RMAA safety. Questionnaires were dispatched to private property management companies, maintenance sections of quasi-government developers and their subcontractors, RMAA sections of general contractors, small RMAA contractors, building services contractors and trade unions in Hong Kong. In total, data from 396 questionnaires were collected from RMAA workers. The sample was divided into two equal-sized sub-samples. On the first sub-sample SEM was used to test the model, which was validated on the second sub-sample. The model revealed a significant negative relationship between RMAA safety climate and incidence of self-reported near misses and injuries, and significant positive relationships between RMAA safety climate and safety participation and safety compliance respectively. Higher RMAA safety climate was positively associated with a lower incidence of self-reported near misses and injuries and higher levels of safety participation and safety compliance.
Resumo:
Many young firms face significant resource constraints during attempts to develop and grow. One promising theory that explicitly links to resource constraints is bricolage: a construct developed by Levi Strauss (1967). Bricolage aligns with notions of resourcefulness: using what’s on hand, through making do, and recombining resources for new or novel purposes. In this paper we further theorize and test the moderating effects of ownership team composition on bricolage and firm performance. Our findings suggest that team size, strong network ties, and functionality enhance the effects of bricolage in young firm performance.
Resumo:
Aim. This paper is a report of a development and validation of a new job performance scale based on an established job performance model. Background. Previous measures of nursing quality are atheoretical and fail to incorporate the complete range of behaviours performed. Thus, an up-to-date measure of job performance is required for assessing nursing quality. Methods. Test construction involved systematic generation of test items using focus groups, a literature review, and an expert review of test items. A pilot study was conducted to determine the multidimensional nature of the taxonomy and its psychometric properties. All data were collected in 2005. Findings. The final version of the nursing performance taxonomy included 41 behaviours across eight dimensions of job performance. Results from preliminary psychometric investigations suggest that the nursing performance scale has good internal consistency, good convergent validity and good criterion validity. Conclusion. The findings give preliminary support for a new job performance scale as a reliable and valid tool for assessing nursing quality. However, further research using a larger sample and nurses from a broader geographical region is required to cross-validate the measure. This scale may be used to guide hospital managers regarding the quality of nursing care within units and to guide future research in the area.
Resumo:
Background Patient satisfaction is influenced by the setting in which patients are treated and the employees providing care. However, to date, limited research has explained how health care organizations or nurses influence patient satisfaction. Objectives The purpose of this study was to test the model that service climate would increase the effort and performance of nursing groups and, in turn, increase patient satisfaction. Method This study incorporated data from 156 nurses, 28 supervisors, and 171 patients. A cross-sectional design was utilized to examine the relationship between service climate, nurse effort, nurse performance and patient satisfaction. Structural equation modeling was conducted to test the proposed relationships. Results Service climate was associated with the effort that nurses directed towards technical care and extra-role behaviors. In turn, the effort that nurses exerted predicted their performance, as rated by their supervisors. Finally, task performance was a significant predictor of patient satisfaction. Conclusions This study suggests that both hospital management and nurses play a role in promoting patient satisfaction. By focusing on creating a climate for service, health care managers can improve nursing performance and patient satisfaction with care.
Resumo:
Driving is often nominated as problematic by individuals with chronic whiplash associated disorders (WAD), yet driving-related performance has not been evaluated objectively. The purpose of this study was to test driving-related performance in persons with chronic WAD against healthy controls of similar age, gender and driving experience to determine if driving-related performance in the WAD group was sufficiently impaired to recommend fitness to drive assessment. Driving-related performance was assessed using an advanced driving simulator during three driving scenarios; freeway, residential and a central business district (CBD). Total driving duration was approximately 15 min. Five driving tasks which could cause a collision (critical events) were included in the scenarios. In addition, the effect of divided attention (identify red dots projected onto side or rear view mirrors) was assessed three times in each scenario. Driving performance was measured using the simulator performance index (SPI) which is calculated from 12 measures. z-Scores for all SPI measures were calculated for each WAD subject based on mean values of the control subjects. The z-scores were then averaged for the WAD group. A z-score of ≤−2 indicated a driving failing grade in the simulator. The number of collisions over the five critical events was compared between the WAD and control groups as was reaction time and missed response ratio in identifying the red dots. Seventeen WAD and 26 control subjects commenced the driving assessment. Demographic data were comparable between the groups. All subjects completed the freeway scenario but four withdrew during the residential and eight during the CBD scenario because of motion sickness. All scenarios were completed by 14 WAD and 17 control subjects. Mean z-scores for the SPI over the three scenarios was statistically lower in the WAD group (−0.3 ± 0.3; P < 0.05) but the score was not below the cut-off point for safe driving. There were no differences in the reaction time and missed response ratio in divided attention tasks between the groups (All P > 0.05). Assessment of driving in an advanced driving simulator for approximately 15 min revealed that driving-related performance in chronic WAD was not sufficiently impaired to recommend the need for fitness to drive assessment.
Resumo:
Creep and shrinkage behaviour of an ultra lightweight cement composite (ULCC) up to 450 days was evaluated in comparison with those of a normal weight aggregate concrete (NWAC) and a lightweight aggregate concrete (LWAC) with similar 28-day compressive strength. The ULCC is characterized by low density < 1500 kg/m3 and high compressive strength about 60 MPa. Autogenous shrinkage increased rapidly in the ULCC at early-age and almost 95% occurred prior to the start of creep test at 28 days. Hence, majority of shrinkage of the ULCC during creep test was drying shrinkage. Total shrinkage of the ULCC during the 450-day creep test was the lowest compared to the NWAC and LWAC. However, corresponding total creep in the ULCC was the highest with high proportion attributed to basic creep (≥ ~90%) and limited drying creep. The high creep of the ULCC is likely due to its low elastic modulus. Specific creep of the ULCC was similar to that of the NWAC, but more than 80% higher than the LWAC. Creep coefficient of the ULCC was about 47% lower than that of the NWAC but about 18% higher than that of the LWAC. Among five creep models evaluated which tend to over-estimate the creep coefficient of the ULCC, EC2 model gives acceptable prediction within +25% deviations. The EC2 model may be used as a first approximate for the creep of ULCC in the designs of steel-concrete composites or sandwich structures in the absence of other relevant creep data.
Resumo:
Integer ambiguity resolution is an indispensable procedure for all high precision GNSS applications. The correctness of the estimated integer ambiguities is the key to achieving highly reliable positioning, but the solution cannot be validated with classical hypothesis testing methods. The integer aperture estimation theory unifies all existing ambiguity validation tests and provides a new prospective to review existing methods, which enables us to have a better understanding on the ambiguity validation problem. This contribution analyses two simple but efficient ambiguity validation test methods, ratio test and difference test, from three aspects: acceptance region, probability basis and numerical results. The major contribution of this paper can be summarized as: (1) The ratio test acceptance region is overlap of ellipsoids while the difference test acceptance region is overlap of half-spaces. (2) The probability basis of these two popular tests is firstly analyzed. The difference test is an approximation to optimal integer aperture, while the ratio test follows an exponential relationship in probability. (3) The limitations of the two tests are firstly identified. The two tests may under-evaluate the failure risk if the model is not strong enough or the float ambiguities fall in particular region. (4) Extensive numerical results are used to compare the performance of these two tests. The simulation results show the ratio test outperforms the difference test in some models while difference test performs better in other models. Particularly in the medium baseline kinematic model, the difference tests outperforms the ratio test, the superiority is independent on frequency number, observation noise, satellite geometry, while it depends on success rate and failure rate tolerance. Smaller failure rate leads to larger performance discrepancy.
Resumo:
A new test of hypothesis for classifying stationary time series based on the bias-adjusted estimators of the fitted autoregressive model is proposed. It is shown theoretically that the proposed test has desirable properties. Simulation results show that when time series are short, the size and power estimates of the proposed test are reasonably good, and thus this test is reliable in discriminating between short-length time series. As the length of the time series increases, the performance of the proposed test improves, but the benefit of bias-adjustment reduces. The proposed hypothesis test is applied to two real data sets: the annual real GDP per capita of six European countries, and quarterly real GDP per capita of five European countries. The application results demonstrate that the proposed test displays reasonably good performance in classifying relatively short time series.
Resumo:
Composite polymer insulators provide many advantages over the traditional porcelain insulators and they are increasingly being used at both transmission and distribution levels. In the present paper, an epoxy resin/silica nanocomposite dielectric material (NDM) structure is proposed and fabricated. Hydrophobic fumed silica is incorporated in epoxy resin matrix and acetone is adopted as media agent to effectively achieve homogenous dispersion of the nano-scale silica filler. The acetone also acts as diluents to reduce viscosity before the curing phase of epoxy resin and enables bubbles to escape from being trapped. Through partial discharge (PD) and surface aging tests, it is illustrated that the inception of surface discharge of the proposed NDM is relatively higher than that of the non-filled counterpart, and a better PD resistivity was observed in the negative half cycle regarding to applied AC voltage. Results of surface aging test indicate that surface discharge activity is retarded over the test conducting time. By contrast, surface discharge developed to the opposite way on the non-filled sample. Therefore, the proposed NDM could provide better safety reliability and lower maintenance cost to industrial application compared with nonfilled conventional epoxy resin.