853 resultados para parallel execution
Resumo:
For a massless fluid (density = 0), the steady flow along a duct is governed exclusively by viscous losses. In this paper, we show that the velocity profile obtained in this limit can be used to calculate the pressure drop up to the first order in density. This method has been applied to the particular case of a duct, defined by two plane-parallel discs. For this case, the first-order approximation results in a simple analytical solution which has been favorably checked against numerical simulations. Finally, an experiment has been carried out with water flowing between the discs. The experimental results show good agreement with the approximate solution
Resumo:
This thesis presents briefly the basic operation and use of centrifugal pumps and parallel pumping applications. The characteristics of parallel pumping applications are compared to circuitry, in order to search analogy between these technical fields. The purpose of studying circuitry is to find out if common software tools for solving circuit performance could be used to observe parallel pumping applications. The empirical part of the thesis introduces a simulation environment for parallel pumping systems, which is based on circuit components of Matlab Simulink —software. The created simulation environment ensures the observation of variable speed controlled parallel pumping systems in case of different controlling methods. The introduced simulation environment was evaluated by building a simulation model for actual parallel pumping system at Lappeenranta University of Technology. The simulated performance of the parallel pumps was compared to measured values of the actual system. The gathered information shows, that if the initial data of the system and pump perfonnance is adequate, the circuitry based simulation environment can be exploited to observe parallel pumping systems. The introduced simulation environment can represent the actual operation of parallel pumps in reasonably accuracy. There by the circuitry based simulation can be used as a researching tool to develop new controlling ways for parallel pumps.
Resumo:
Numerous studies assess the correlation between genetic and species diversities, but the processes underlying the observed patterns have only received limited attention. For instance, varying levels of habitat disturbance across a region may locally reduce both diversities due to extinctions, and increased genetic drift during population bottlenecks and founder events. We investigated the regional distribution of genetic and species diversities of a coastal sand dune plant community along 240 kilometers of coastline with the aim to test for a correlation between the two diversity levels. We further quantify and tease apart the respective contributions of natural and anthropogenic disturbance factors to the observed patterns. We detected significant positive correlation between both variables. We further revealed a negative impact of urbanization: Sites with a high amount of recreational infrastructure within 10 km coastline had significantly lowered genetic and species diversities. On the other hand, a measure of natural habitat disturbance had no effect. This study shows that parallel variation of genetic and species diversities across a region can be traced back to human landscape alteration, provides arguments for a more resolute dune protection, and may help to design priority conservation areas.
Resumo:
This thesis deals with a hardware accelerated Java virtual machine, named REALJava. The REALJava virtual machine is targeted for resource constrained embedded systems. The goal is to attain increased computational performance with reduced power consumption. While these objectives are often seen as trade-offs, in this context both of them can be attained simultaneously by using dedicated hardware. The target level of the computational performance of the REALJava virtual machine is initially set to be as fast as the currently available full custom ASIC Java processors. As a secondary goal all of the components of the virtual machine are designed so that the resulting system can be scaled to support multiple co-processor cores. The virtual machine is designed using the hardware/software co-design paradigm. The partitioning between the two domains is flexible, allowing customizations to the resulting system, for instance the floating point support can be omitted from the hardware in order to decrease the size of the co-processor core. The communication between the hardware and the software domains is encapsulated into modules. This allows the REALJava virtual machine to be easily integrated into any system, simply by redesigning the communication modules. Besides the virtual machine and the related co-processor architecture, several performance enhancing techniques are presented. These include techniques related to instruction folding, stack handling, method invocation, constant loading and control in time domain. The REALJava virtual machine is prototyped using three different FPGA platforms. The original pipeline structure is modified to suit the FPGA environment. The performance of the resulting Java virtual machine is evaluated against existing Java solutions in the embedded systems field. The results show that the goals are attained, both in terms of computational performance and power consumption. Especially the computational performance is evaluated thoroughly, and the results show that the REALJava is more than twice as fast as the fastest full custom ASIC Java processor. In addition to standard Java virtual machine benchmarks, several new Java applications are designed to both verify the results and broaden the spectrum of the tests.
Resumo:
A new approach for teaching in basic experimental organic chemistry is presented. Experimental work goes on parallel to theoretical lectures leading to an immediate application of theoretical concepts transmitted therein. One day/week is dedicated exclusively to the organic laboratory. Reactions are proposed as problems to be solved; the student has to deduce the structure of the product on the basis of his observations, the analytical data and his mechanistical knowledge. 70 different experiments, divided in 7 thematical chapters, are presented. All experiments require the analysis and discussion of 1H and 13C NMR, IR and UV spectra. Additional questions about each reaction have to be answered by the student in his written report. Laboratory safety is garanteed by the exclusion or substitution of hazardous and toxic reagents. Microscale preparations are adopted in most cases to lower the cost of materials and the amount of waste. Recycling of many reaction products as starting materials in other experiments reduces the need for commercial reagents and allows the execution of longer reaction sequences. Only unexpensive standard laboratory equipment and simple glassware are required. All experiments include instructions for the save treatment or disposal of chemical waste.
Resumo:
Over the last decades, calibration techniques have been widely used to improve the accuracy of robots and machine tools since they only involve software modification instead of changing the design and manufacture of the hardware. Traditionally, there are four steps are required for a calibration, i.e. error modeling, measurement, parameter identification and compensation. The objective of this thesis is to propose a method for the kinematics analysis and error modeling of a newly developed hybrid redundant robot IWR (Intersector Welding Robot), which possesses ten degrees of freedom (DOF) where 6-DOF in parallel and additional 4-DOF in serial. In this article, the problem of kinematics modeling and error modeling of the proposed IWR robot are discussed. Based on the vector arithmetic method, the kinematics model and the sensitivity model of the end-effector subject to the structure parameters is derived and analyzed. The relations between the pose (position and orientation) accuracy and manufacturing tolerances, actuation errors, and connection errors are formulated. Computer simulation is performed to examine the validity and effectiveness of the proposed method.
Resumo:
Background: Since barrier protection measures to avoid contact with allergens are being increasingly developed, we assessed the clinical efficacy and tolerability of a topical nasal microemulsion made of glycerol esters in patients with allergic rhinitis. Methods: Randomized, controlled, double-blind, parallel group, multicentre, multinational clinical trial in which adult patients with allergic rhinitis or rhinoconjunctivitis due to sensitization to birch, grass or olive tree pollens received treatment with topical microemulsion or placebo during the pollen seasons. Efficacy variables included scores in the mini-RQLQ questionnaire, number and severity of nasal, ocular and lung signs and symptoms, need for symptomatic medications and patients" satisfaction with treatment. Adverse events were also recorded. Results: Demographic characteristics were homogeneous between groups and mini-RQLQ scores did not differ significantly at baseline (visit 1). From symptoms recorded in the diary cards, the ME group showed statistically significant better scores for nasal congestion (0.72 vs. 1.01; p = 0.017) and mean total nasal symptoms (0.7 vs. 0.9; p = 0.045). At visit 2 (pollen season), lower values were observed in the mini-RQLQ in the ME group, although there were no statistically significant differences between groups in both full analysis set (FAS) and patients completing treatment (PPS) populations. The results obtained in the nasal symptoms domain of the mini-RQLQ at visit 2 showed the highest difference (−0.43; 95% CI: -0.88 to 0.02) for the ME group in the FAS population. The topical microemulsion was safe and well tolerated and no major discomforts were observed. Satisfaction rating with the treatment was similar between the groups. Conclusions: The topical application of the microemulsion is a feasible and safe therapy in the prevention of allergic symptoms, particularly nasal congestion.
Resumo:
Simulation has traditionally been used for analyzing the behavior of complex real world problems. Even though only some features of the problems are considered, simulation time tends to become quite high even for common simulation problems. Parallel and distributed simulation is a viable technique for accelerating the simulations. The success of parallel simulation depends heavily on the combination of the simulation application, algorithm and message population in the simulation is sufficient, no additional delay is caused by this environment. In this thesis a conservative, parallel simulation algorithm is applied to the simulation of a cellular network application in a distributed workstation environment. This thesis presents a distributed simulation environment, Diworse, which is based on the use of networked workstations. The distributed environment is considered especially hard for conservative simulation algorithms due to the high cost of communication. In this thesis, however, the distributed environment is shown to be a viable alternative if the amount of communication is kept reasonable. Novel ideas of multiple message simulation and channel reduction enable efficient use of this environment for the simulation of a cellular network application. The distribution of the simulation is based on a modification of the well known Chandy-Misra deadlock avoidance algorithm with null messages. The basic Chandy Misra algorithm is modified by using the null message cancellation and multiple message simulation techniques. The modifications reduce the amount of null messages and the time required for their execution, thus reducing the simulation time required. The null message cancellation technique reduces the processing time of null messages as the arriving null message cancels other non processed null messages. The multiple message simulation forms groups of messages as it simulates several messages before it releases the new created messages. If the message population in the simulation is suffiecient, no additional delay is caused by this operation A new technique for considering the simulation application is also presented. The performance is improved by establishing a neighborhood for the simulation elements. The neighborhood concept is based on a channel reduction technique, where the properties of the application exclusively determine which connections are necessary when a certain accuracy for simulation results is required. Distributed simulation is also analyzed in order to find out the effect of the different elements in the implemented simulation environment. This analysis is performed by using critical path analysis. Critical path analysis allows determination of a lower bound for the simulation time. In this thesis critical times are computed for sequential and parallel traces. The analysis based on sequential traces reveals the parallel properties of the application whereas the analysis based on parallel traces reveals the properties of the environment and the distribution.
Resumo:
We present parallel characterizations of two different values in the framework of restricted cooperation games. The restrictions are introduced as a finite sequence of partitions defined on the player set, each of them being coarser than the previous one, hence forming a structure of different levels of a priori unions. On the one hand, we consider a value first introduced in Ref. [18], which extends the Shapley value to games with different levels of a priori unions. On the other hand, we introduce another solution for the same type of games, which extends the Banzhaf value in the same manner. We characterize these two values using logically comparable properties.
Resumo:
Teaching the measurement of blood pressure for both nursing and public health nursing students The purpose of this two-phase study was to develop the teaching of blood pressure measurement within the nursing degree programmes of the Universities of Applied Sciences. The first survey phase described what and how blood pressure measurement was taught within nursing degree programmes. The second intervention phase (2004-2005) evaluated first academic year nursing and public health nursing students’ knowledge and skills results for blood pressure measurement. Additionally, the effect on the Taitoviikko experimental group students’ blood pressure measurement knowledge and skills level. A further objective was to construct models for an instrument (RRmittTest) to evaluate nursing students measurement of blood pressure (2003-2009). The research data for the survey phase were collected from teachers (total sampling, N=107, response rate 77%) using a specially developed RRmittopetus-questionnaire. Quasi-experimental study data on the RRmittTest-instrument was collected from students (purposive sampling, experimental group, n=29, control group, n=44). The RRmittTest consisted of a test of knowledge (Tietotesti) and simulation-based test (TaitoSimkäsi and Taitovideo) of skills. Measurements were made immediately after the teaching and in clinical practice. Statistical methods were used to analyse the results and responses to open-ended questions were organised and classified. Due to the small amount of materials involved and the results of distribution tests of the variables, non-parametric analytic methods were mainly used. Experimental group and control group similar knowledge and skills teaching was based on the results of the national survey phase (RRmittopetus) questionnaire results. Experimental group teaching includes the supervised Taitoviikko teaching method. During Taitoviikko students studied blood pressure measurement at the municipal hospital in a real nursing environment, guided by a teacher and a clinical nursing professional. In order to evaluate both learning and teaching the processes and components of blood pressure measurement were clearly defined as follows: the reliability of measurement instruments, activities preceding blood pressure measurement, technical execution of the measurement, recording, lifestyle guidance and measurement at home (self-monitoring). According to the survey study, blood pressure measurement is most often taught at Universities of Applied Sciences, separately, as knowledge (teaching of theory, 2 hours) and skills (classroom practice, 4 hours). The teaching was implemented largely in a classroom and was based mainly on a textbook. In the intervention phase the students had good knowledge of blood pressure measurement. However, their blood pressure measurement skills were deficient and the control group students, in particular, were highly deficient. Following in clinical practice the experimental group and control group students’ blood pressure measurement recording knowledge improve and experimental groups declined lifestyle guidance. Skills did not improve within any of the components analysed. The control groups` skills on the whole, declined statistically.There was a significant decline amongst the experimental group although only in one component measured. The results describe the learning results for first academic year students and no parallel conclusions should be drawn when considering any learning results for graduating students. The results support the use and further development of the Taitoviiko teaching method. The RRmittTest developed for the study should be assessed and the results seen from a negative perspective. This evaluation tool needs to be developed and retested.
Resumo:
The maximum realizable power throughput of power electronic converters may be limited or constrained by technical or economical considerations. One solution to this problemis to connect several power converter units in parallel. The parallel connection can be used to increase the current carrying capacity of the overall system beyond the ratings of individual power converter units. Thus, it is possible to use several lower-power converter units, produced in large quantities, as building blocks to construct high-power converters in a modular manner. High-power converters realized by using parallel connection are needed for example in multimegawatt wind power generation systems. Parallel connection of power converter units is also required in emerging applications such as photovoltaic and fuel cell power conversion. The parallel operation of power converter units is not, however, problem free. This is because parallel-operating units are subject to overcurrent stresses, which are caused by unequal load current sharing or currents that flow between the units. Commonly, the term ’circulatingcurrent’ is used to describe both the unequal load current sharing and the currents flowing between the units. Circulating currents, again, are caused by component tolerances and asynchronous operation of the parallel units. Parallel-operating units are also subject to stresses caused by unequal thermal stress distribution. Both of these problemscan, nevertheless, be handled with a proper circulating current control. To design an effective circulating current control system, we need information about circulating current dynamics. The dynamics of the circulating currents can be investigated by developing appropriate mathematical models. In this dissertation, circulating current models aredeveloped for two different types of parallel two-level three-phase inverter configurations. Themodels, which are developed for an arbitrary number of parallel units, provide a framework for analyzing circulating current generation mechanisms and developing circulating current control systems. In addition to developing circulating current models, modulation of parallel inverters is considered. It is illustrated that depending on the parallel inverter configuration and the modulation method applied, common-mode circulating currents may be excited as a consequence of the differential-mode circulating current control. To prevent the common-mode circulating currents that are caused by the modulation, a dual modulator method is introduced. The dual modulator basically consists of two independently operating modulators, the outputs of which eventually constitute the switching commands of the inverter. The two independently operating modulators are referred to as primary and secondary modulators. In its intended usage, the same voltage vector is fed to the primary modulators of each parallel unit, and the inputs of the secondary modulators are obtained from the circulating current controllers. To ensure that voltage commands obtained from the circulating current controllers are realizable, it must be guaranteed that the inverter is not driven into saturation by the primary modulator. The inverter saturation can be prevented by limiting the inputs of the primary and secondary modulators. Because of this, also a limitation algorithm is proposed. The operation of both the proposed dual modulator and the limitation algorithm is verified experimentally.
Resumo:
The aim of this thesis is to describe hybrid drive design problems, the advantages and difficulties related to the drive. A review of possible hybrid constructions, benefits of parallel, series and series-parallel hybrids is done. In the thesis analytical and finite element calculations of permanent magnet synchronous machines with embedded magnets were done. The finite element calculations were done using Cedrat’s Flux 2D software. This machine is planned to be used as a motor-generator in a low power parallel hybrid vehicle. The boundary conditions for the design were found from Lucas-TVS Ltd., India. Design Requirements, briefly: • The system DC voltage level is 120 V, which implies Uphase = 49 V (RMS) in a three phase system. • The power output of 10 kW at base speed 1500 rpm (Torque of 65 Nm) is desired. • The maximum outer diameter should not be more than 250 mm, and the maximum core length should not exceed 40 mm. The main difficulties which the author met were the dimensional restrictions. After having designed and analyzed several possible constructions they were compared and the final design selected. Dimensioned and detailed design is performed. Effects of different parameters, such as the number of poles, number of turns and magnetic geometry are discussed. The best modification offers considerable reduction of volume.
Resumo:
Diplomityön tarkoituksena on optimoida asiakkaiden sähkölaskun laskeminen hajautetun laskennan avulla. Älykkäiden etäluettavien energiamittareiden tullessa jokaiseen kotitalouteen, energiayhtiöt velvoitetaan laskemaan asiakkaiden sähkölaskut tuntiperusteiseen mittaustietoon perustuen. Kasvava tiedonmäärä lisää myös tarvittavien laskutehtävien määrää. Työssä arvioidaan vaihtoehtoja hajautetun laskennan toteuttamiseksi ja luodaan tarkempi katsaus pilvilaskennan mahdollisuuksiin. Lisäksi ajettiin simulaatioita, joiden avulla arvioitiin rinnakkaislaskennan ja peräkkäislaskennan eroja. Sähkölaskujen oikeinlaskemisen tueksi kehitettiin mittauspuu-algoritmi.
Resumo:
Formal methods provide a means of reasoning about computer programs in order to prove correctness criteria. One subtype of formal methods is based on the weakest precondition predicate transformer semantics and uses guarded commands as the basic modelling construct. Examples of such formalisms are Action Systems and Event-B. Guarded commands can intuitively be understood as actions that may be triggered when an associated guard condition holds. Guarded commands whose guards hold are nondeterministically chosen for execution, but no further control flow is present by default. Such a modelling approach is convenient for proving correctness, and the Refinement Calculus allows for a stepwise development method. It also has a parallel interpretation facilitating development of concurrent software, and it is suitable for describing event-driven scenarios. However, for many application areas, the execution paradigm traditionally used comprises more explicit control flow, which constitutes an obstacle for using the above mentioned formal methods. In this thesis, we study how guarded command based modelling approaches can be conveniently and efficiently scheduled in different scenarios. We first focus on the modelling of trust for transactions in a social networking setting. Due to the event-based nature of the scenario, the use of guarded commands turns out to be relatively straightforward. We continue by studying modelling of concurrent software, with particular focus on compute-intensive scenarios. We go from theoretical considerations to the feasibility of implementation by evaluating the performance and scalability of executing a case study model in parallel using automatic scheduling performed by a dedicated scheduler. Finally, we propose a more explicit and non-centralised approach in which the flow of each task is controlled by a schedule of its own. The schedules are expressed in a dedicated scheduling language, and patterns assist the developer in proving correctness of the scheduled model with respect to the original one.