888 resultados para non-smooth dynamical systems
Resumo:
In der vorliegenden Dissertation werden Systeme von parallel arbeitenden und miteinander kommunizierenden Restart-Automaten (engl.: systems of parallel communicating restarting automata; abgekürzt PCRA-Systeme) vorgestellt und untersucht. Dabei werden zwei bekannte Konzepte aus den Bereichen Formale Sprachen und Automatentheorie miteinander vescrknüpft: das Modell der Restart-Automaten und die sogenannten PC-Systeme (systems of parallel communicating components). Ein PCRA-System besteht aus endlich vielen Restart-Automaten, welche einerseits parallel und unabhängig voneinander lokale Berechnungen durchführen und andererseits miteinander kommunizieren dürfen. Die Kommunikation erfolgt dabei durch ein festgelegtes Kommunikationsprotokoll, das mithilfe von speziellen Kommunikationszuständen realisiert wird. Ein wesentliches Merkmal hinsichtlich der Kommunikationsstruktur in Systemen von miteinander kooperierenden Komponenten ist, ob die Kommunikation zentralisiert oder nichtzentralisiert erfolgt. Während in einer nichtzentralisierten Kommunikationsstruktur jede Komponente mit jeder anderen Komponente kommunizieren darf, findet jegliche Kommunikation innerhalb einer zentralisierten Kommunikationsstruktur ausschließlich mit einer ausgewählten Master-Komponente statt. Eines der wichtigsten Resultate dieser Arbeit zeigt, dass zentralisierte Systeme und nichtzentralisierte Systeme die gleiche Berechnungsstärke besitzen (das ist im Allgemeinen bei PC-Systemen nicht so). Darüber hinaus bewirkt auch die Verwendung von Multicast- oder Broadcast-Kommunikationsansätzen neben Punkt-zu-Punkt-Kommunikationen keine Erhöhung der Berechnungsstärke. Desweiteren wird die Ausdrucksstärke von PCRA-Systemen untersucht und mit der von PC-Systemen von endlichen Automaten und mit der von Mehrkopfautomaten verglichen. PC-Systeme von endlichen Automaten besitzen bekanntermaßen die gleiche Ausdrucksstärke wie Einwegmehrkopfautomaten und bilden eine untere Schranke für die Ausdrucksstärke von PCRA-Systemen mit Einwegkomponenten. Tatsächlich sind PCRA-Systeme auch dann stärker als PC-Systeme von endlichen Automaten, wenn die Komponenten für sich genommen die gleiche Ausdrucksstärke besitzen, also die regulären Sprachen charakterisieren. Für PCRA-Systeme mit Zweiwegekomponenten werden als untere Schranke die Sprachklassen der Zweiwegemehrkopfautomaten im deterministischen und im nichtdeterministischen Fall gezeigt, welche wiederum den bekannten Komplexitätsklassen L (deterministisch logarithmischer Platz) und NL (nichtdeterministisch logarithmischer Platz) entsprechen. Als obere Schranke wird die Klasse der kontextsensitiven Sprachen gezeigt. Außerdem werden Erweiterungen von Restart-Automaten betrachtet (nonforgetting-Eigenschaft, shrinking-Eigenschaft), welche bei einzelnen Komponenten eine Erhöhung der Berechnungsstärke bewirken, in Systemen jedoch deren Stärke nicht erhöhen. Die von PCRA-Systemen charakterisierten Sprachklassen sind unter diversen Sprachoperationen abgeschlossen und einige Sprachklassen sind sogar abstrakte Sprachfamilien (sogenannte AFL's). Abschließend werden für PCRA-Systeme spezifische Probleme auf ihre Entscheidbarkeit hin untersucht. Es wird gezeigt, dass Leerheit, Universalität, Inklusion, Gleichheit und Endlichkeit bereits für Systeme mit zwei Restart-Automaten des schwächsten Typs nicht semientscheidbar sind. Für das Wortproblem wird gezeigt, dass es im deterministischen Fall in quadratischer Zeit und im nichtdeterministischen Fall in exponentieller Zeit entscheidbar ist.
Resumo:
This report examines how to estimate the parameters of a chaotic system given noisy observations of the state behavior of the system. Investigating parameter estimation for chaotic systems is interesting because of possible applications for high-precision measurement and for use in other signal processing, communication, and control applications involving chaotic systems. In this report, we examine theoretical issues regarding parameter estimation in chaotic systems and develop an efficient algorithm to perform parameter estimation. We discover two properties that are helpful for performing parameter estimation on non-structurally stable systems. First, it turns out that most data in a time series of state observations contribute very little information about the underlying parameters of a system, while a few sections of data may be extraordinarily sensitive to parameter changes. Second, for one-parameter families of systems, we demonstrate that there is often a preferred direction in parameter space governing how easily trajectories of one system can "shadow'" trajectories of nearby systems. This asymmetry of shadowing behavior in parameter space is proved for certain families of maps of the interval. Numerical evidence indicates that similar results may be true for a wide variety of other systems. Using the two properties cited above, we devise an algorithm for performing parameter estimation. Standard parameter estimation techniques such as the extended Kalman filter perform poorly on chaotic systems because of divergence problems. The proposed algorithm achieves accuracies several orders of magnitude better than the Kalman filter and has good convergence properties for large data sets.
Resumo:
The speed of fault isolation is crucial for the design and reconfiguration of fault tolerant control (FTC). In this paper the fault isolation problem is stated as a constraint satisfaction problem (CSP) and solved using constraint propagation techniques. The proposed method is based on constraint satisfaction techniques and uncertainty space refining of interval parameters. In comparison with other approaches based on adaptive observers, the major advantage of the presented method is that the isolation speed is fast even taking into account uncertainty in parameters, measurements and model errors and without the monotonicity assumption. In order to illustrate the proposed approach, a case study of a nonlinear dynamic system is presented
Resumo:
This paper deals with fault detection and isolation problems for nonlinear dynamic systems. Both problems are stated as constraint satisfaction problems (CSP) and solved using consistency techniques. The main contribution is the isolation method based on consistency techniques and uncertainty space refining of interval parameters. The major advantage of this method is that the isolation speed is fast even taking into account uncertainty in parameters, measurements, and model errors. Interval calculations bring independence from the assumption of monotony considered by several approaches for fault isolation which are based on observers. An application to a well known alcoholic fermentation process model is presented
Resumo:
The Networks and Complexity in Social Systems course commences with an overview of the nascent field of complex networks, dividing it into three related but distinct strands: Statistical description of large scale networks, viewed as static objects; the dynamic evolution of networks, where now the structure of the network is understood in terms of a growth process; and dynamical processes that take place on fixed networks; that is, "networked dynamical systems". (A fourth area of potential research ties all the previous three strands together under the rubric of co-evolution of networks and dynamics, but very little research has been done in this vein and so it is omitted.) The remainder of the course treats each of the three strands in greater detail, introducing technical knowledge as required, summarizing the research papers that have introduced the principal ideas, and pointing out directions for future development. With regard to networked dynamical systems, the course treats in detail the more specific topic of information propagation in networks, in part because this topic is of great relevance to social science, and in part because it has received the most attention in the literature to date.
Resumo:
Investigation of preferred structures of planetary wave dynamics is addressed using multivariate Gaussian mixture models. The number of components in the mixture is obtained using order statistics of the mixing proportions, hence avoiding previous difficulties related to sample sizes and independence issues. The method is first applied to a few low-order stochastic dynamical systems and data from a general circulation model. The method is next applied to winter daily 500-hPa heights from 1949 to 2003 over the Northern Hemisphere. A spatial clustering algorithm is first applied to the leading two principal components (PCs) and shows significant clustering. The clustering is particularly robust for the first half of the record and less for the second half. The mixture model is then used to identify the clusters. Two highly significant extratropical planetary-scale preferred structures are obtained within the first two to four EOF state space. The first pattern shows a Pacific-North American (PNA) pattern and a negative North Atlantic Oscillation (NAO), and the second pattern is nearly opposite to the first one. It is also observed that some subspaces show multivariate Gaussianity, compatible with linearity, whereas others show multivariate non-Gaussianity. The same analysis is also applied to two subperiods, before and after 1978, and shows a similar regime behavior, with a slight stronger support for the first subperiod. In addition a significant regime shift is also observed between the two periods as well as a change in the shape of the distribution. The patterns associated with the regime shifts reflect essentially a PNA pattern and an NAO pattern consistent with the observed global warming effect on climate and the observed shift in sea surface temperature around the mid-1970s.
Resumo:
We describe and implement a fully discrete spectral method for the numerical solution of a class of non-linear, dispersive systems of Boussinesq type, modelling two-way propagation of long water waves of small amplitude in a channel. For three particular systems, we investigate properties of the numerically computed solutions; in particular we study the generation and interaction of approximate solitary waves.
Resumo:
Stochastic methods are a crucial area in contemporary climate research and are increasingly being used in comprehensive weather and climate prediction models as well as reduced order climate models. Stochastic methods are used as subgrid-scale parameterizations (SSPs) as well as for model error representation, uncertainty quantification, data assimilation, and ensemble prediction. The need to use stochastic approaches in weather and climate models arises because we still cannot resolve all necessary processes and scales in comprehensive numerical weather and climate prediction models. In many practical applications one is mainly interested in the largest and potentially predictable scales and not necessarily in the small and fast scales. For instance, reduced order models can simulate and predict large-scale modes. Statistical mechanics and dynamical systems theory suggest that in reduced order models the impact of unresolved degrees of freedom can be represented by suitable combinations of deterministic and stochastic components and non-Markovian (memory) terms. Stochastic approaches in numerical weather and climate prediction models also lead to the reduction of model biases. Hence, there is a clear need for systematic stochastic approaches in weather and climate modeling. In this review, we present evidence for stochastic effects in laboratory experiments. Then we provide an overview of stochastic climate theory from an applied mathematics perspective. We also survey the current use of stochastic methods in comprehensive weather and climate prediction models and show that stochastic parameterizations have the potential to remedy many of the current biases in these comprehensive models.
Resumo:
We consider the billiard dynamics in a non-compact set of ℝ d that is constructed as a bi-infinite chain of translated copies of the same d-dimensional polytope. A random configuration of semi-dispersing scatterers is placed in each copy. The ensemble of dynamical systems thus defined, one for each global realization of the scatterers, is called quenched random Lorentz tube. Under some fairly general conditions, we prove that every system in the ensemble is hyperbolic and almost every system is recurrent, ergodic, and enjoys some higher chaotic properties.
Resumo:
Estimating trajectories and parameters of dynamical systems from observations is a problem frequently encountered in various branches of science; geophysicists for example refer to this problem as data assimilation. Unlike as in estimation problems with exchangeable observations, in data assimilation the observations cannot easily be divided into separate sets for estimation and validation; this creates serious problems, since simply using the same observations for estimation and validation might result in overly optimistic performance assessments. To circumvent this problem, a result is presented which allows us to estimate this optimism, thus allowing for a more realistic performance assessment in data assimilation. The presented approach becomes particularly simple for data assimilation methods employing a linear error feedback (such as synchronization schemes, nudging, incremental 3DVAR and 4DVar, and various Kalman filter approaches). Numerical examples considering a high gain observer confirm the theory.
Resumo:
Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a simple empirical system based on multiple linear regression for producing probabilistic forecasts of seasonal surface air temperature and precipitation across the globe. The global CO2-equivalent concentration is taken as the primary predictor; subsequent predictors, including large-scale modes of variability in the climate system and local-scale information, are selected on the basis of their physical relationship with the predictand. The focus given to the climate change signal as a source of skill and the probabilistic nature of the forecasts produced constitute a novel approach to global empirical prediction. Hindcasts for the period 1961–2013 are validated against observations using deterministic (correlation of seasonal means) and probabilistic (continuous rank probability skill scores) metrics. Good skill is found in many regions, particularly for surface air temperature and most notably in much of Europe during the spring and summer seasons. For precipitation, skill is generally limited to regions with known El Niño–Southern Oscillation (ENSO) teleconnections. The system is used in a quasi-operational framework to generate empirical seasonal forecasts on a monthly basis.
Resumo:
In this paper we give general results on the continuity of pullback attractors for nonlinear evolution processes. We then revisit results of [D. Li, P.E. Kloeden, Equi-attraction and the continuous dependence of pullback attractors on parameters, Stoch. Dyn. 4 (3) (2004) 373-384] which show that, under certain conditions, continuity is equivalent to uniformity of attraction over a range of parameters (""equi-attraction""): we are able to simplify their proofs and weaken the conditions required for this equivalence to hold. Generalizing a classical autonomous result [A.V. Babin, M.I. Vishik, Attractors of Evolution Equations, North Holland, Amsterdam, 1992] we give bounds on the rate of convergence of attractors when the family is uniformly exponentially attracting. To apply these results in a more concrete situation we show that a non-autonomous regular perturbation of a gradient-like system produces a family of pullback attractors that are uniformly exponentially attracting: these attractors are therefore continuous, and we can give an explicit bound on the distance between members of this family. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Let a > 0, Omega subset of R(N) be a bounded smooth domain and - A denotes the Laplace operator with Dirichlet boundary condition in L(2)(Omega). We study the damped wave problem {u(tt) + au(t) + Au - f(u), t > 0, u(0) = u(0) is an element of H(0)(1)(Omega), u(t)(0) = v(0) is an element of L(2)(Omega), where f : R -> R is a continuously differentiable function satisfying the growth condition vertical bar f(s) - f (t)vertical bar <= C vertical bar s - t vertical bar(1 + vertical bar s vertical bar(rho-1) + vertical bar t vertical bar(rho-1)), 1 < rho < (N - 2)/(N + 2), (N >= 3), and the dissipativeness condition limsup(vertical bar s vertical bar ->infinity) s/f(s) < lambda(1) with lambda(1) being the first eigenvalue of A. We construct the global weak solutions of this problem as the limits as eta -> 0(+) of the solutions of wave equations involving the strong damping term 2 eta A(1/2)u with eta > 0. We define a subclass LS subset of C ([0, infinity), L(2)(Omega) x H(-1)(Omega)) boolean AND L(infinity)([0, infinity), H(0)(1)(Omega) x L(2)(Omega)) of the `limit` solutions such that through each initial condition from H(0)(1)(Omega) x L(2)(Omega) passes at least one solution of the class LS. We show that the class LS has bounded dissipativeness property in H(0)(1)(Omega) x L(2)(Omega) and we construct a closed bounded invariant subset A of H(0)(1)(Omega) x L(2)(Omega), which is weakly compact in H(0)(1)(Omega) x L(2)(Omega) and compact in H({I})(s)(Omega) x H(s-1)(Omega), s is an element of [0, 1). Furthermore A attracts bounded subsets of H(0)(1)(Omega) x L(2)(Omega) in H({I})(s)(Omega) x H(s-1)(Omega), for each s is an element of [0, 1). For N = 3, 4, 5 we also prove a local uniqueness result for the case of smooth initial data.
Resumo:
We investigated the transition to spatio-temporal chaos in spatially extended nonlinear dynamical systems possessing an invariant subspace with a low-dimensional attractor. When the latter is chaotic and the subspace is transversely stable we have a spatially homogeneous state only. The onset of spatio-temporal chaos, i.e. the excitation of spatially inhomogeneous modes, occur through the loss of transversal stability of some unstable periodic orbit embedded in the chaotic attractor lying in the invariant subspace. This is a bubbling transition, since there is a switching between spatially homogeneous and nonhomogeneous states with statistical properties of on-off intermittency. Hence the onset of spatio-temporal chaos depends critically both on the existence of a chaotic attractor in the invariant subspace and its being transversely stable or unstable. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We analyze the stability properties of equilibrium solutions and periodicity of orbits in a two-dimensional dynamical system whose orbits mimic the evolution of the price of an asset and the excess demand for that asset. The construction of the system is grounded upon a heterogeneous interacting agent model for a single risky asset market. An advantage of this construction procedure is that the resulting dynamical system becomes a macroscopic market model which mirrors the market quantities and qualities that would typically be taken into account solely at the microscopic level of modeling. The system`s parameters correspond to: (a) the proportion of speculators in a market; (b) the traders` speculative trend; (c) the degree of heterogeneity of idiosyncratic evaluations of the market agents with respect to the asset`s fundamental value; and (d) the strength of the feedback of the population excess demand on the asset price update increment. This correspondence allows us to employ our results in order to infer plausible causes for the emergence of price and demand fluctuations in a real asset market. The employment of dynamical systems for studying evolution of stochastic models of socio-economic phenomena is quite usual in the area of heterogeneous interacting agent models. However, in the vast majority of the cases present in the literature, these dynamical systems are one-dimensional. Our work is among the few in the area that construct and study analytically a two-dimensional dynamical system and apply it for explanation of socio-economic phenomena.