992 resultados para neural architecture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, physical layer awareness in access, core, and metro networks is addressed, and a Physical Layer Aware Network Architecture Framework for the Future Internet is presented and discussed, as proposed within the framework of the European ICT Project 4WARD. Current limitations and shortcomings of the Internet architecture are driving research trends at a global scale toward a novel, secure, and flexible architecture. This Future Internet architecture must allow for the co-existence and cooperation of multiple networks on common platforms, through the virtualization of network resources. Possible solutions embrace a full range of technologies, from fiber backbones to wireless access networks. The virtualization of physical networking resources will enhance the possibility of handling different profiles, while providing the impression of mutual isolation. This abstraction strategy implies the use of well elaborated mechanisms in order to deal with channel impairments and requirements, in both wireless (access) and optical (core) environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of catalytic networks have been widely studied over the last decades because of their implications in several fields like prebiotic evolution, virology, neural networks, immunology or ecology. One of the most studied mathematical bodies for catalytic networks was initially formulated in the context of prebiotic evolution, by means of the hypercycle theory. The hypercycle is a set of self-replicating species able to catalyze other replicator species within a cyclic architecture. Hypercyclic organization might arise from a quasispecies as a way to increase the informational containt surpassing the so-called error threshold. The catalytic coupling between replicators makes all the species to behave like a single and coherent evolutionary multimolecular unit. The inherent nonlinearities of catalytic interactions are responsible for the emergence of several types of dynamics, among them, chaos. In this article we begin with a brief review of the hypercycle theory focusing on its evolutionary implications as well as on different dynamics associated to different types of small catalytic networks. Then we study the properties of chaotic hypercycles with error-prone replication with symbolic dynamics theory, characterizing, by means of the theory of topological Markov chains, the topological entropy and the periods of the orbits of unimodal-like iterated maps obtained from the strange attractor. We will focus our study on some key parameters responsible for the structure of the catalytic network: mutation rates, autocatalytic and cross-catalytic interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Computação e Instrumentação Médica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Institutions have been creating their own specific weblab infrastructures. Usually, they use distinct software and hardware architectures comprehending instruments and modules (I&M) able to be parameterized but difficult to be shared. These aspects are impairing their widespread in education, since collaboration between institutions, in developing and sharing resources, is still low. To handle both aspects, this paper proposes the adoption of the IEEE1451.0 Std. with FPGA technology for creating reconfigurable weblab infrastructures. It is suggested the adoption of an IEEE1451.0 infrastructure with compatible instruments, described in Hardware Description Languages (HDL), to be reconfigured in FPGA-based boards. Besides an overview of the IEEE1451.0 Std., this paper presents a solution currently under development which seeks to enable the reconfiguration and the remote control of weblab infrastructures using a set of IEEE1451.0 HTTP commands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The computations performed by the brain ultimately rely on the functional connectivity between neurons embedded in complex networks. It is well known that the neuronal connections, the synapses, are plastic, i.e. the contribution of each presynaptic neuron to the firing of a postsynaptic neuron can be independently adjusted. The modulation of effective synaptic strength can occur on time scales that range from tens or hundreds of milliseconds, to tens of minutes or hours, to days, and may involve pre- and/or post-synaptic modifications. The collection of these mechanisms is generally believed to underlie learning and memory and, hence, it is fundamental to understand their consequences in the behavior of neurons.(...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologiea da Universidade Nova de Lisboa, para obtenção do Grau de Mestre em Engenharia Biomédica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sparse matrix-vector multiplication (SMVM) is a fundamental operation in many scientific and engineering applications. In many cases sparse matrices have thousands of rows and columns where most of the entries are zero, while non-zero data is spread over the matrix. This sparsity of data locality reduces the effectiveness of data cache in general-purpose processors quite reducing their performance efficiency when compared to what is achieved with dense matrix multiplication. In this paper, we propose a parallel processing solution for SMVM in a many-core architecture. The architecture is tested with known benchmarks using a ZYNQ-7020 FPGA. The architecture is scalable in the number of core elements and limited only by the available memory bandwidth. It achieves performance efficiencies up to almost 70% and better performances than previous FPGA designs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an FPGA-based architecture for onboard hyperspectral unmixing. This method based on the Vertex Component Analysis (VCA) has several advantages, namely it is unsupervised, fully automatic, and it works without dimensionality reduction (DR) pre-processing step. The architecture has been designed for a low cost Xilinx Zynq board with a Zynq-7020 SoC FPGA based on the Artix-7 FPGA programmable logic and tested using real hyperspectral datasets. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low cost embedded systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperspectral imaging has become one of the main topics in remote sensing applications, which comprise hundreds of spectral bands at different (almost contiguous) wavelength channels over the same area generating large data volumes comprising several GBs per flight. This high spectral resolution can be used for object detection and for discriminate between different objects based on their spectral characteristics. One of the main problems involved in hyperspectral analysis is the presence of mixed pixels, which arise when the spacial resolution of the sensor is not able to separate spectrally distinct materials. Spectral unmixing is one of the most important task for hyperspectral data exploitation. However, the unmixing algorithms can be computationally very expensive, and even high power consuming, which compromises the use in applications under on-board constraints. In recent years, graphics processing units (GPUs) have evolved into highly parallel and programmable systems. Specifically, several hyperspectral imaging algorithms have shown to be able to benefit from this hardware taking advantage of the extremely high floating-point processing performance, compact size, huge memory bandwidth, and relatively low cost of these units, which make them appealing for onboard data processing. In this paper, we propose a parallel implementation of an augmented Lagragian based method for unsupervised hyperspectral linear unmixing on GPUs using CUDA. The method called simplex identification via split augmented Lagrangian (SISAL) aims to identify the endmembers of a scene, i.e., is able to unmix hyperspectral data sets in which the pure pixel assumption is violated. The efficient implementation of SISAL method presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-technical loss is not a problem with trivial solution or regional character and its minimization represents the guarantee of investments in product quality and maintenance of power systems, introduced by a competitive environment after the period of privatization in the national scene. In this paper, we show how to improve the training phase of a neural network-based classifier using a recently proposed meta-heuristic technique called Charged System Search, which is based on the interactions between electrically charged particles. The experiments were carried out in the context of non-technical loss in power distribution systems in a dataset obtained from a Brazilian electrical power company, and have demonstrated the robustness of the proposed technique against with several others natureinspired optimization techniques for training neural networks. Thus, it is possible to improve some applications on Smart Grids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The restructuring of electricity markets, conducted to increase the competition in this sector, and decrease the electricity prices, brought with it an enormous increase in the complexity of the considered mechanisms. The electricity market became a complex and unpredictable environment, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. Software tools became, therefore, essential to provide simulation and decision support capabilities, in order to potentiate the involved players’ actions. This paper presents the development of a metalearner, applied to the decision support of electricity markets’ negotiation entities. The proposed metalearner executes a dynamic artificial neural network to create its own output, taking advantage on several learning algorithms implemented in ALBidS, an adaptive learning system that provides decision support to electricity markets’ players. The proposed metalearner considers different weights for each strategy, depending on its individual quality of performance. The results of the proposed method are studied and analyzed in scenarios based on real electricity markets’ data, using MASCEM - a multi-agent electricity market simulator that simulates market players’ operation in the market.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The forthcoming smart grids are comprised of integrated microgrids operating in grid-connected and isolated mode with local generation, storage and demand response (DR) programs. The proposed model is based on three successive complementary steps for power transaction in the market environment. The first step is characterized as a microgrid’s internal market; the second concerns negotiations between distinct interconnected microgrids; and finally, the third refers to the actual electricity market. The proposed approach is modeled and tested using a MAS framework directed to the study of the smart grids environment, including the simulation of electricity markets. This is achieved through the integration of the proposed approach with the MASGriP (Multi-Agent Smart Grid Platform) system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents several forecasting methodologies based on the application of Artificial Neural Networks (ANN) and Support Vector Machines (SVM), directed to the prediction of the solar radiance intensity. The methodologies differ from each other by using different information in the training of the methods, i.e, different environmental complementary fields such as the wind speed, temperature, and humidity. Additionally, different ways of considering the data series information have been considered. Sensitivity testing has been performed on all methodologies in order to achieve the best parameterizations for the proposed approaches. Results show that the SVM approach using the exponential Radial Basis Function (eRBF) is capable of achieving the best forecasting results, and in half execution time of the ANN based approaches.