969 resultados para moving particle tracking
Resumo:
This paper presents a prototype tracking system for tracking people in enclosed indoor environments where there is a high rate of occlusions. The system uses a stereo camera for acquisition, and is capable of disambiguating occlusions using a combination of depth map analysis, a two step ellipse fitting people detection process, the use of motion models and Kalman filters and a novel fit metric, based on computationally simple object statistics. Testing shows that our fit metric outperforms commonly used position based metrics and histogram based metrics, resulting in more accurate tracking of people.
Resumo:
Person tracking systems to date have either relied on motion detection or optical flow as a basis for person detection and tracking. As yet, systems have not been developed that utilise both these techniques. We propose a person tracking system that uses both, made possible by a novel hybrid optical flow-motion detection technique that we have developed. This provides the system with two methods of person detection, helping to avoid missed detections and the need to predict position, which can lead to errors in tracking and mistakes when handling occlusion situations. Our results show that our system is able to track people accurately, with an average error less than four pixels, and that our system outperforms the current CAVIAR benchmark system.
Resumo:
Characterization of indoor particle sources from 14 residential houses in Brisbane, Australia, was performed. The approximation of PM2.5 and the submicrometre particle number concentrations were measured simultaneously for more than 48 h in the kitchen of all the houses by using a photometer (DustTrak) and a condensation particle counter (CPC), respectively. From the real time indoor particle concentration data and a diary of indoor activities, the indoor particle sources were identified. The study found that among the indoor activities recorded in this study, frying, grilling, stove use, toasting, cooking pizza, smoking, candle vaporizing eucalyptus oil and fan heater use, could elevate the indoor particle number concentration levels by more than five times. The indoor approximation of PM2.5 concentrations could be close to 90 times, 30 times and three times higher than the background levels during grilling, frying and smoking, respectively.