985 resultados para modified ICSS algorithm
Resumo:
Biodiesel production by methanolysis of semi-refined rapeseed oil was studied over lime based catalysts. In order to improve the catalysts basicity a commercial CaO material was impregnated with aqueous solution of lithium nitrate (Li/Ca = 03 atomic ratio). The catalysts were calcined at 575 degrees C and 800 degrees C, for 5 h, to remove nitrate ions before reaction. The XRD patterns of the fresh catalysts, including the bare CaO, showed lines ascribable to CaO and Ca(OH)(2). The absence of XRD lines belonging to Li phases confirms the efficient dispersion of Li over CaO. In the tested condition (W-cat/W-oil = 5%; CH3OH/oil = 12 molar ratio) all the fresh catalysts provided similar biodiesel yields (FAME >93% after 4 h) but the bare CaO catalyst was more stable. The activity decay of the Li modified samples can be related to the enhanced, by the higher basicity, calcium diglyceroxide formation during methanolysis which promotes calcium leaching. The calcination temperature for Li modified catalysts plays an important role since encourages the crystals sinterization which appears to improve the catalyst stability. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a genetic algorithm-based approach for project scheduling with multi-modes and renewable resources. In this problem activities of the project may be executed in more than one operating mode and renewable resource constraints are imposed. The objective function is the minimization of the project completion time. The idea of this approach is integrating a genetic algorithm with a schedule generation scheme. This study also proposes applying a local search procedure trying to yield a better solution when the genetic algorithm and the schedule generation scheme obtain a solution. The experimental results show that this algorithm is an effective method for solving this problem.
Resumo:
The resource constrained project scheduling problem (RCPSP) is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. During the last couple of years many heuristic procedures have been developed for this problem, but still these procedures often fail in finding near-optimal solutions. This paper proposes a genetic algorithm for the resource constrained project scheduling problem. The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities and delay times of the activities are defined by the genetic algorithm. The approach was tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm.
Resumo:
- The resource constrained project scheduling problem (RCPSP) is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. During the last couple of years many heuristic procedures have been developed for this problem, but still these procedures often fail in finding near-optimal solutions. This paper proposes a genetic algorithm for the resource constrained project scheduling problem. The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities and delay times of the activities are defined by the genetic algorithm. The approach was tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm
Resumo:
This paper presents a biased random-key genetic algorithm for the resource constrained project scheduling problem. The chromosome representation of the problem is based on random keys. Active schedules are constructed using a priority-rule heuristic in which the priorities of the activities are defined by the genetic algorithm. A forward-backward improvement procedure is applied to all solutions. The chromosomes supplied by the genetic algorithm are adjusted to reflect the solutions obtained by the improvement procedure. The heuristic is tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm.
Resumo:
This paper presents a methodology for applying scheduling algorithms using Monte Carlo simulation. The methodology is based on a decision support system (DSS). The proposed methodology combines a genetic algorithm with a new local search using Monte Carlo Method. The methodology is applied to the job shop scheduling problem (JSSP). The JSSP is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. The methodology is tested on a set of standard instances taken from the literature and compared with others. The computation results validate the effectiveness of the proposed methodology. The DSS developed can be utilized in a common industrial or construction environment.
Resumo:
This paper presents a genetic algorithm for the multimode resource-constrained project scheduling problem (MRCPSP), in which multiple execution modes are available for each of the activities of the project. The objective function is the minimization of the construction project completion time. To solve the problem, is applied a two-level genetic algorithm, which makes use of two separate levels and extend the parameterized schedule generation scheme by introducing an improvement procedure. It is evaluated the quality of the schedule and present detailed comparative computational results for the MRCPSP, which reveal that this approach is a competitive algorithm.
Resumo:
Dependability is a critical factor in computer systems, requiring high quality validation & verification procedures in the development stage. At the same time, digital devices are getting smaller and access to their internal signals and registers is increasingly complex, requiring innovative debugging methodologies. To address this issue, most recent microprocessors include an on-chip debug (OCD) infrastructure to facilitate common debugging operations. This paper proposes an enhanced OCD infrastructure with the objective of supporting the verification of fault-tolerant mechanisms through fault injection campaigns. This upgraded on-chip debug and fault injection (OCD-FI) infrastructure provides an efficient fault injection mechanism with improved capabilities and dynamic behavior. Preliminary results show that this solution provides flexibility in terms of fault triggering and allows high speed real-time fault injection in memory elements
Resumo:
Several phenomena present in electrical systems motivated the development of comprehensive models based on the theory of fractional calculus (FC). Bearing these ideas in mind, in this work are applied the FC concepts to define, and to evaluate, the electrical potential of fractional order, based in a genetic algorithm optimization scheme. The feasibility and the convergence of the proposed method are evaluated.
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia
Resumo:
This paper presents a genetic algorithm for the Resource Constrained Project Scheduling Problem (RCPSP). The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities of the activities are defined by the genetic algorithm. The heuristic generates parameterized active schedules. The approach was tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm.
Resumo:
Fault injection is frequently used for the verification and validation of the fault tolerant features of microprocessors. This paper proposes the modification of a common on-chip debugging (OCD) infrastructure to add fault injection capabilities and improve performance. The proposed solution imposes a very low logic overhead and provides a flexible and efficient mechanism for the execution of fault injection campaigns, being applicable to different target system architectures.
Resumo:
This work addresses the signal propagation and the fractional-order dynamics during the evolution of a genetic algorithm (GA). In order to investigate the phenomena involved in the GA population evolution, the mutation is exposed to excitation perturbations during some generations and the corresponding fitness variations are evaluated. Three distinct fitness functions are used to study their influence in the GA dynamics. The input and output signals are studied revealing a fractional-order dynamic evolution, characteristic of a long-term system memory.
Resumo:
In this study the effect of incorporation of recycled glass-fibre reinforced polymer (GFRP) waste materials, obtained by means of milling processes, on mechanical behaviour of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste powder and fibres, with distinct size gradings, were incorporated into polyester based mortars as sand aggregates and filler replacements. Flexural and compressive loading capacities were evaluated and found better than unmodified polymer mortars. GFRP modified polyester based mortars also show a less brittle behaviour, with retention of some loading capacity after peak load. Obtained results highlight the high potential of recycled GFRP waste materials as efficient and sustainable reinforcement and admixture for polymer concrete and mortars composites, constituting an emergent waste management solution.
Resumo:
Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remolded, and complex composition of the composite itself, which includes glass fibres, matrix and different types of inorganic fillers. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. There are several methods to recycle GFR thermostable materials: (a) incineration, with partial energy recovery due to the heat generated during organic part combustion; (b) thermal and/or chemical recycling, such as solvolysis, pyrolisis and similar thermal decomposition processes, with glass fibre recovering; and (c) mechanical recycling or size reduction, in which the material is subjected to a milling process in order to obtain a specific grain size that makes the material suitable as reinforcement in new formulations. This last method has important advantages over the previous ones: there is no atmospheric pollution by gas emission, a much simpler equipment is required as compared with ovens necessary for thermal recycling processes, and does not require the use of chemical solvents with subsequent environmental impacts. In this study the effect of incorporation of recycled GFRP waste materials, obtained by means of milling processes, on mechanical behavior of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste materials, with distinct size gradings, were incorporated into polyester polymer mortars as sand aggregates and filler replacements. The effect of GFRP waste treatment with silane coupling agent was also assessed. Design of experiments and data treatment were accomplish by means of factorial design and analysis of variance ANOVA. The use of factorial experiment design, instead of the one factor at-a-time method is efficient at allowing the evaluation of the effects and possible interactions of the different material factors involved. Experimental results were promising toward the recyclability of GFRP waste materials as polymer mortar aggregates, without significant loss of mechanical properties with regard to non-modified polymer mortars.