950 resultados para micro c T
Resumo:
Nanomedicine is a new branch of medicine, based on the potentiality and intrinsic properties of nanomaterials. Indeed, the nanomaterials ( i.e. the materials with nano and under micron size) can be suitable to different applications in biomedicine. The nanostructures can be used by taking advantage of their properties (for example superparamagnetic nanoparticles) or functionalized to deliver the drug in a specific target, thanks the ability to cross biological barriers. The size and the shape of 1D-nanostructures (nanotubes and nanowires) have an important role on the cell fate: their morphology plays a key role on the interaction between nanostructure and the biological system. For this reason the 1D nanostructure are interesting for their ability to mime the biological system. An implantable material or device must therefore integrate with the surrounding extracellular matrix (ECM), a complex network of proteins with structural and signaling properties. Innovative techniques allow the generation of complex surface patterns that can resemble the structure of the ECM, such as 1D nanostructures. NWs based on cubic silicon carbide (3C-SiC), either bare (3C-SiC NWs) or surrounded by an amorphous shell (3C-SiC/SiO2 core/shell NWs), and silicon oxycarbide nanowires (SiOxCy NWs) can meet the chemical, mechanical and electrical requirements for tissue engineering and have a strong potential to pave the way for the development of a novel generation of implantable nano-devices. Silicon oxycarbide shows promising physical and chemical properties as elastic modulus, bending strength and hardness, chemical durability superior to conventional silicate glasses in aggressive environments and high temperature stability up to 1300 °C. Moreover, it can easily be engineered through functionalization and decoration with macro-molecules and nanoparticles. Silicon carbide has been extensively studied for applications in harsh conditions, as chemical environment, high electric field and high and low temperature, owing to its high hardness, high thermal conductivity, chemical inertness and high electron mobility. Also, its cubic polytype (3C) is highly biocompatible and hemocompatible, and some prototypes of biomedical applications and biomedical devices have been already realized starting from 3C-SiC thin films. Cubic SiC-based NWs can be used as a biomimetic biomaterial, providing a robust and novel biocompatible biological interface . We cultured in vitro A549 human lung adenocarcinoma epithelial cells and L929 murine fibroblast cells over core/shell SiC/SiO2, SiOxCy and bare 3C-SiC nanowire platforms, and analysed the cytotoxicity, by indirect and direct contact tests, the cell adhesion, and the cell proliferation. These studies showed that all the nanowires are biocompatible according to ISO 10993 standards. We evaluated the blood compatibility through the interaction of the nanowires with platelet rich plasma. The adhesion and activation of platelets on the nanowire bundles, assessed via SEM imaging and soluble P-selectin quantification, indicated that a higher platelet activation is induced by the core/shell structures compared to the bare ones. Further, platelet activation is higher with 3C-SiC/SiO2 NWs and SiOxCyNWs, which therefore appear suitable in view of possible tissue regeneration. On the contrary, bare 3C-SiC NWs show a lower platelet activation and are therefore promising in view of implantable bioelectronics devices, as cardiovascular implantable devices. The NWs properties are suitable to allow the design of a novel subretinal Micro Device (MD). This devices is based on Si NWs and PEDOT:PSS, though the well know principle of the hybrid ordered bulk heterojunction (OBHJ). The aim is to develop a device based on a well-established photovoltaic technology and to adapt this know-how to the prosthetic field. The hybrid OBHJ allows to form a radial p–n junction on a nanowire/organic structure. In addition, the nanowires increase the light absorption by means of light scattering effects: a nanowires based p-n junction increases the light absorption up to the 80%, as previously demonstrated, overcoming the Shockley-Queisser limit of 30 % of a bulk p-n junction. Another interesting employment of these NWs is to design of a SiC based epicardial-interacting patch based on teflon that include SiC nanowires. . Such contact patch can bridge the electric conduction across the cardiac infarct as nanowires can ‘sense’ the direction of the wavefront propagation on the survival cardiac tissue and transmit it to the downstream surivived regions without discontinuity. The SiC NWs are tested in terms of toxicology, biocompatibility and conductance among cardiomyocytes and myofibroblasts.
Resumo:
Introdução: Infecções relacionadas à assistência de saúde (IRAS) representam hoje um dos principais desafios da qualidade do cuidado do paciente, principalmente em pacientes submetido a transplante de células tronco e hematopoiéticas (TCTH) O banho diário com a clorexidina (CHG) degermante a 2% tem sido proposto principalmente em unidades de terapia intensivas (UTIs) para diminuir a colonização bacteriana do paciente e assim diminuir IRAS. O objetivo deste estudo foi avaliar o impacto do banho com CHG degermante a 2% em unidade de internação de TCTH na incidência de infecção e colonização por patógenos multirresistentes e ainda avaliar seu impacto na sensibilidade das bactérias ao antisséptico. Métodos: Foi realizado um estudo quasi-experimental, com duração de 9 anos, com início em janeiro/2005 até dezembro/2013. A intervenção foi iniciada em agosto de 2009, sendo que os períodos pré e pós-intervenção tiveram duração de 4,5 anos. As taxas de IRAS, infecção por gram-negativos multirresistentes e infecção e colonização por enterococo resistente a vancomicina (VRE) foram avaliadas através de série temporal, para estudar o impacto da intervenção. As concentrações inibitórias mínimas (CIM) das bactérias para a CHG com e sem o inibidor de bomba de efluxo (CCCP) foram avaliadas nos dois períodos. Os genes de resistência a CHG foram estudados por meio da PCR e a clonalidade dos isolados por eletroforese em campo pulsátil. Resultados: Foi observada redução significativa na incidência de infecção e colonização de VRE na unidade no período pós-intervenção (p: 0,001). Essa taxa permaneceu estável em outras UTIs clínicas do hospital. Contudo as taxas de infecção por Gram negativos multirresistentes aumentou nos últimos anos na unidade. Não ocorreu diminuição na taxa de IRAS na unidade. As CIMs testadas de CHG aumentaram nas amostras de VRE e K. pneumoniae após o período de exposição ao antisséptico, com queda importante da CIM após o uso do CCCP, revelando ser a bomba de efluxo, um importante mecanismo de resistência à CHG. As amostras de A. baumannii e P. aeruginosa não apresentaram aumento da CIM após período de exposição à clorexidina. As bombas de efluxo Ade A, B e C estiveram presentes na maioria dos A. baumannii do grupo controle (66%). A bomba cepA foi encontrada em 67% de todas as K. pneumoniae testadas e em 44,5% das P. aeruginosas do grupo pré intervenção. Observamos uma relação positiva entre a presença da CepA nas amostras de K. pneumoniae e a resposta ao CCCP: de todas as 49 amostras CepA positivas 67,3% obtiveram redução do seu MIC em 4 diluições após adição do CCCP. A avaliação de clonalidade demonstrou padrão policlonal das amostras de VRE, K. pneumoniae e A. baumannii avaliadas. Em relação às amostras de P. aeruginosa foi observado que no período pós-intervenção ocorreu predominância de um clone com > 80% semelhança em 10 das 22 amostras avaliadas pelo dendrograma. Conclusões: O banho de clorexidina teve impacto na redução da incidência de infecção e colonização por VRE na unidade de TCTH, e não teve o mesmo impacto nas bactérias gram-negativas. Os mecanismos moleculares de resistência à clorexidina estão intimamente ligados à presença de bomba de efluxo, sendo provavelmente o principal mecanismo de resistência e tolerância das bactérias ao antisséptico
Micro/Mesoporous Activated Carbons Derived from Polyaniline: Promising Candidates for CO2 Adsorption
Resumo:
A series of activated carbons were prepared by carbonization of polyaniline at different temperatures, using KOH or K2CO3 as activating agent. Pure microporous or micro/mesoporous activated carbons were obtained depending on the preparation conditions. Carbonization temperature has been proven to be a key parameter to define the textural properties of the carbon when using KOH. Low carbonization temperatures (400–650 °C) yield materials with a highly developed micro- and mesoporous structure, whereas high temperatures (800 °C) yield microporous carbons. Some of the materials prepared using KOH exhibit a BET surface area superior to 4000 m2/g, with total pore volume exceeding 2.5 cm3/g, which are among the largest found for activated carbons. On the other hand, microporous materials are obtained when using K2CO3, independently of carbonization temperature. Some of the materials were tested for CO2 capture due to their high microporosity and N content. The adsorption capacity for CO2 at atmospheric pressure and 0 °C achieves a value of ∼7.6 mmol CO2/g, which is among the largest reported in the literature. This study provides guidelines for the design of activated carbons with a proper N/C ratio for CO2 capture at atmospheric pressure.
Resumo:
In situ high pressure 129Xe NMR spectroscopy in combination with volumetric adsorption measurements were used for the textural characterization of different carbon materials with well-defined porosity including microporous carbide-derived carbons, ordered mesoporous carbide-derived carbon, and ordered mesoporous CMK-3. Adsorption/desorption isotherms were measured also by NMR up to relative pressures close to p/p0 = 1 at 237 K. The 129Xe NMR chemical shift of xenon adsorbed in porous carbons is found to be correlated with the pore size in analogy to other materials such as zeolites. In addition, these measurements were performed loading the samples with n-nonane. Nonane molecules preferentially block the micropores. However, 129Xe NMR spectroscopy proves that the nonane also influences the mesopores, thus providing information about the pore system in hierarchically structured materials.
Resumo:
Objectives: This article further examines the phenomenon of aggression inside barrooms by relying on the “bouncer-ethnographer” methodology. The objective is to investigate variations in aggression through time and space according to the role and routine of the target in a Montreal barroom. Thus, it provides an examination of routine activity theory at the micro level: the barroom. Methods: For a period of 258 nights of observation in a Canadian barroom, bouncers completed reports on each intervention and provided specific information regarding what happened, when and where within the venue. In addition, the bouncer-ethnographer compiled field observations and interviews with bar personnel in order to identify aggression hotspots and “rush hours” for three types of actors within barrooms: (a) bouncers, (b) barmaids and (c) patrons. Findings: Three different patterns emerged for shifting hotspots of aggression depending on the target. As the night progresses, aggressive incidents between patrons, towards barmaids and towards bouncers have specific hotspots and rush hours influenced by the specific routine of the target inside the barroom. Implications: The current findings enrich those of previous work by pointing to the relevance of not only examining the environmental characteristics of the barroom, but also the role of the target of aggression. Crime opportunities follow routine activities, even within a specific location on a micro level. Routine activity theory is thus relevant in this context, because as actors in differing roles follow differing routines, as do their patterns of victimization.
Resumo:
"HNG-42/6-94(4M)E."
Resumo:
Vol. 2, pts. 1-2, paged continuously.
Resumo:
Rates of cardiovascular and renal disease in Australian Aboriginal communities are high, but we do not know the contribution of inflammation to these diseases in this setting. In the present study, we sought to examine the distribution of C-reactive protein (CRP) and other markers of inflammation and their relationships with cardiovascular risk markers and renal disease in a remote Australian Aboriginal community. The study included 237 adults (58% of the adult population) in a remote Aboriginal community in the Northern Territory of Australia. Main outcome measures were CRP, fibrinogen and lgG concentrations, blood pressure (BP), presence of diabetes, lipids, albuminuria, seropositivity to three common micro-organisms, as well as carotid intima-media thickness (IMT). Serum concentrations of CRP [7 (5-13) mg/l; median (inter-quartile range)] were markedly increased and were significantly correlated with fibrinogen and lgG concentrations and inversely correlated with serum albumin concentration. Higher CRP concentrations were associated with lgG seropositivity to Helicobacter pylori and Chlamydia pneumoniae and higher lgG titre for cytomegalovirus. Higher CRP concentrations were associated with the following: the 45-54-year age group, female subjects, the presence of skin sores, higher body mass index, waist circumference, BP, glycated haemoglobin and greater albuminuria. CRP concentrations increased with the number of cardiovascular risk factors, carotid IMT and albuminuria independently of other risk factors. These CRP concentrations were markedly higher than described in other community settings and are probably related, in a large part, to chronic and repeated infections. Their association with markers of cardiovascular risk and renal disease are compatible with the high rates of cardiovascular and renal disease in this community, and provide more evidence of strong links between these conditions, through a shared background of infection/inflammation. This suggests that a strong focus on prevention and management of infections will be important in reducing these conditions, in addition to interventions directed at more traditional risk factors.
Resumo:
The proteome of bovine milk is dominated by just six gene products that constitute approximately 95% of milk protein. Nonetheless, over 150 protein spots can be readily detected following two-dimensional electrophoresis of whole milk. Many of these represent isoforms of the major gene products produced through extensive posttranslational modification. Peptide mass fingerprinting of in-gel tryptic digests (using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) in reflectron mode with alpha-cyano-4-hydroxycinnamic acid as the matrix) identified 10 forms of K-casein with isoelectric point (pl) values from 4.47 to 5.81, but could not distinguish between them. MALDI-TOF MS in linear mode, using sinapinic acid as the matrix, revealed a large tryptic peptide (mass > 5990 Da) derived from the C-terminus that contained all the known sites of genetic variance, phosphorylation and glycosylation. Two genetic variants present as singly or doubly phosphorylated forms could be distinguished using mass data alone. Glycoforms containing a single acidic tetrasaccharide were also identified. The differences in electrophoretic mobility of these isoforms were consistent with the addition of the acidic groups. While more extensively glycosylated forms were also observed, substantial loss of N-acetylneuraminic acid from the glycosyl group was evident in the MALDI spectra such that ions corresponding to the intact glycopeptide were not observed and assignment of the glycoforms was not possible. However, by analysing the pl shifts observed on the two-dimensional gels in conjunction with the MS data, the number of N-acetylneuraminic acid residues, and hence the glycoforms present, could be determined.
Resumo:
The water characteristics in cooked pressure-heat treated (45 degreesC for 45 min prior to pressurisation at 150 MPa for 30 min) and non-pressurised, cooked (control) samples of beef Longissimus aged for 1, 3, 8 or 16 days were studied by nuclear magnetic resonance microscopy. A multi-echo sequence was used to obtain T2 images, and independent of ageing period, the T2 values were found to be lower in pressure-heat treated meat revealing alterations in water characteristics of pressure-treated, cooked meat compared with cooked meat. With increasing ageing duration, the T2 values in both pressure-treated, cooked and cooked meat decreased indicating that the water became more tightly trapped in the protein network. In addition, independent of length of ageing period the relationship between cooking loss in the cooked meat and transverse relaxation differed between non-pressurised and pressure-treated meat. which reveals that the mechanisms changing the water properties in beef during ageing are different from those occuring during pressure-heat treatment of meat. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Protein molecular motors, which are natural nano-machines that convert the chemical energy into mechanical work for cellular motion, muscle contraction and cell division, have been integrated in the last decade in primitive nanodevices based on the motility of nano-biological objects in micro- and nano-fabricated structures. However, the motility of microorganisms powered by molecular motors has not been similarly exploited. Moreover, among the proposed devices based on molecular motors, i.e., nanosensors, nano-mechanical devices and nano-imaging devices, biocomputation devices are conspicuously missing. The present contribution discusses, based on the present state of the art nano- and micro-fabrication, the comparative advantages and disadvantages of using nano- and micro-biological objects in future computation devices. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The use of gene guns in ballistically delivering DNA vaccine coated gold micro-particles to skin can potentially damage targeted cells, therefore influencing transfection efficiencies. In this paper, we assess cell death in the viable epidermis by non-invasive near infrared two-photon microscopy following micro-particle bombardment of murine skin. We show that the ballistic delivery of micro-particles to the viable epidermis can result in localised cell death. Furthermore, experimental results show the degree of cell death is dependant on the number of micro-particles delivered per unit of tissue surface area. Micro-particles densities of 0.16 +/- 0.27 (mean +/- S.D.), 1.35 +/- 0.285 and 2.72 +/- 0.47 per 1000 mu m(2) resulted in percent deaths of 3.96 +/- 5.22, 45.91 +/- 10.89, 90.52 +/- 12.28, respectively. These results suggest that optimization of transfection by genes administered with gene guns is - among other effects - a compromise of micro-particle payload and cell death. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Analysis of intra- and inter-phase distribution of modifying elements in aluminium-silicon alloys is difficult due to the low concentrations used. This research utilises a mu-XRF (X-ray fluorescence) technique at the SPring-8 synchrotron radiation facility X-ray source and reveals that the modifying element strontium segregates exclusively to the eutectic silicon phase and the distribution of strontium within this phase is relatively homogeneous. This has important implications for the fundamental mechanisms of eutectic modification in hypoeutectic aluminium-silicon alloys. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.