937 resultados para life-cycle


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most adverse environmental impacts result from design decisions made long before manufacturing or usage. In order to prevent this situation, several authors have proposed the application of life cycle assessment (LCA) at the very first phases of the design of a process, a product or a service. The study in this paper presents an innovative thermal drying process for sewage sludge called fry-drying, in which dewatered sludge is directly contacted in the dryer with hot recycled cooking oils (RCO) as the heat medium. Considering the practical difficulties for the disposal of these two wastes, fry-drying presents a potentially convenient method for their combined elimination by incineration of the final fry-dried sludge. An analytical comparison between a conventional drying process and the new proposed fry-drying process is reported, with reference to some environmental impact categories. The results of this study, applied at the earliest stages of the design of the process, assist evaluation of the feasibility of such system compared to a current disposal process for the drying and incineration of sewage sludge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biphasic (pelagobenthic) life cycle is found throughout the animal kingdom, and includes gametogenesis, embryogenesis, and metamorphosis. From a tangled web of hypotheses on the origin and evolution of the metazoan pelagobenthic life cycle, current opinion appears to favor a simple, larval-like holopelagic ancestor that independently settled multiple times to incorporate a benthic phase into the life cycle. This hypothesis derives originally from Haeckel's (1874) Gastraea theory of ontogeny recapitulating phylogeny, in which the gastrula is viewed as the recapitulation of a gastracan ancestor that evolved via selection on a simple, planktonic hollow ball of cells to develop the capacity to feed. Here, we propose an equally plausible hypothesis that the origin of the metazoan pelagobenthic life cycle was a direct consequence of sexual reproduction in a likely holobenthic ancestor. In doing so, we take into account new insights from poriferan development and from molecular phylogenies. In this scenario, the gastrula does not represent a recapitulation, but simply an embryological stage that is an outcome of sexual reproduction. The embryo can itself be considered as the precursor to a biphasic lifestyle, with the embryo representing one phase and the adult another phase. This hypothesis is more parsimonious because it precludes the need for multiple, independent origins of the benthic form. It is then reasonable to consider that multilayered, ciliated embryos ultimately released into the water column are subject to natural selection for dispersal/longevity/feeding that sets them on the evolutionary trajectory towards the crown metazoan planktonic larvae. These new insights from poriferan development thus clearly support the intercalation hypothesis of bilaterian larval evolution, which we now believe should be extended to discussions of the origin of biphasy in the metazoan last common ancestor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animals and plants in temperate regions must adapt their life cycle to pronounced seasonal variation. The research effort that has gone into studying these cyclical life history events, or phenological traits, has increased greatly in recent decades. As phenological traits are often correlated to temperature, they are relevant to study in terms of understanding the effect of short term environmental variation as well as long term climate change. Because of this, changes in phenology are the most obvious and among the most commonly reported responses to climate change. Moreover, phenological traits are important for fitness as they determine the biotic and abiotic environment an individual encounters. Fine-tuning of phenology allows for synchronisation at a local scale to mates, food resources and appropriate weather conditions. On a between-population scale, variation in phenology may reflect regional variation in climate. Such differences can not only give insights to life cycle adaptation, but also to how populations may respond to environmental change through time. This applies both on an ecological scale through phenotypic plasticity as well as an evolutionary scale through genetic adaptation. In this thesis I have used statistical and experimental methods to investigate both the larger geographical patterns as well as mechanisms of fine-tuning of phenology of several butterfly species. The main focus, however, is on the orange tip butterfly, Anthocharis cardamines, in Sweden and the United Kingdom. I show a contrasting effect of spring temperature and winter condition on spring phenology for three out of the five studied butterfly species. For A. cardamines there are population differences in traits responding to these environmental factors between and within Sweden and the UK that suggest adaptation to local environmental conditions. All populations show a strong negative plastic relationship between spring temperature and spring phenology, while the opposite is true for winter cold duration. Spring phenology is shifted earlier with increasing cold duration. The environmental variables show correlations, for example, during a warm year a short winter delays phenology while a warm spring speeds phenology up. Correlations between the environmental variables also occur through space, as the locations that have long winters also have cold springs. The combined effects of these two environmental variables cause a complex geographical pattern of phenology across the UK and Sweden. When predicting phenology with future climate change or interpreting larger geographical patterns one must therefore have a good enough understanding of how the phenology is controlled and take the relevant environmental factors in to account. In terms of the effect of phenological change, it should be discussed with regards to change in life cycle timing among interacting species. For example, the phenology of the host plants is important for A. cardamines fitness, and it is also the main determining factor for oviposition. In summary, this thesis shows that the broad geographical pattern of phenology of the butterflies is formed by counteracting environmental variables, but that there also are significant population differences that enable fine-tuning of phenology according to the seasonal progression and variation at the local scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article takes a broader theoretical perspective of the retail life cycle by incorporating threshold periods at important inflection points in the international growth process. Specifically, it considers one threshold interval between an early phase of disjointed international expansion and a more focused, accelerated international growth programme. It concludes that executives need to consider a set of threshold periods during the development and growth of international store operations, understand why these events occur, and consider in what ways to respond to them to overcome and cross the threshold. Salient lessons are extracted from Wal-Mart's experiences during the threshold period for other international managers. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As an alternative fuel for compression ignition engines, plant oils are in principle renewable and carbon-neutral. However, their use raises technical, economic and environmental issues. A comprehensive and up-to-date technical review of using both edible and non-edible plant oils (either pure or as blends with fossil diesel) in CI engines, based on comparisons with standard diesel fuel, has been carried out. The properties of several plant oils, and the results of engine tests using them, are reviewed based on the literature. Findings regarding engine performance, exhaust emissions and engine durability are collated. The causes of technical problems arising from the use of various oils are discussed, as are the modifications to oil and engine employed to alleviate these problems. The review shows that a number of plant oils can be used satisfactorily in CI engines, without transesterification, by preheating the oil and/or modifying the engine parameters and the maintenance schedule. As regards life-cycle energy and greenhouse gas emission analyses, these reveal considerable advantages of raw plant oils over fossil diesel and biodiesel. Typical results show that the life-cycle output-to-input energy ratio of raw plant oil is around 6 times higher than fossil diesel. Depending on either primary energy or fossil energy requirements, the life-cycle energy ratio of raw plant oil is in the range of 2–6 times higher than corresponding biodiesel. Moreover, raw plant oil has the highest potential of reducing life-cycle GHG emissions as compared to biodiesel and fossil diesel.