954 resultados para lean implementation time
Resumo:
This qualitative study explored secondary teachers' perceptions of scheduling in relation to pedagogy, curriculum, and observation of student learning. Its objective was to determine the best way to organize the scheduling for the delivery of Ontario's new 4-year curriculum. Six participants were chosen. Two were teaching in a semestered timetable, 1 in a traditional timetable, and 3 had experience in both schedules. Participants related a pressure cooker "lived experience" with weaker students in the semester system experiencing a particularly harsh environment. The inadequate amount of time for review in content-heavy courses, gap scheduling problems, catch-up difficulties for students missing classes, and the fast pace of semestering are identified as factors negatively impacting on these students. Government testing adds to the pressure by shifting teachers' time and attention in the classroom from deeper learning to a superficial coverage of material, from curriculum as lived to curriculum as text to be covered. Scheduling choice should be available in public education to accommodate the needs of all students. Curriculum guidelines need to be revamped to reflect the content that teachers believe is necessary for a successful course delivery. Applied level courses need to be developed for students who are not academically inferior but learn differently.
Resumo:
Since the early 1970's, Canadians have expressed many concerns about the growth of government and its impact on their daily lives. The public has requested increased access to government documents and improved protection of the personal information which is held in government files and data banks. At the same time, both academics and practitioners in the field of public administration have become more interested in the values that public servants bring to their decisions and recommendations. Certain administrative values, such as accountability and integrity, have taken on greater relative importance. The purpose of this thesis is to examine the implementation of Ontario's access and privacy law. It centres on the question of whether or not the Freedom of Information and Protection of Privacy Act, 1987, (FIPPA) has answered the demand for open access to government while at the same time protecting the personal privacy of individual citizens. It also assesses the extent to which this relatively new piece of legislation has made a difference to the people of Ontario. The thesis presents an overview of the issues of freedom of information and protection of privacy in Ontario. It begins with the evolution of the legislation and a description of the law itself. It focuses on the structures and processes which have been established to meet the procedural and administrative demands of the Act. These structures and processes are evaluated in two ways. First, the thesis evaluates how open the Ontario government has become and, second, it determines how Ill carefully the privacy rights of individuals are safeguarded. An analytical framework of administrative values is used to evaluate the overall performance of the government in these two areas. The conclusion is drawn that, overall, the Ontario government has effectively implemented the Freedom of Information and Protection of Privacy Act, particularly by providing access to most government-held documents. The protection of individual privacy has proved to be not only more difficult to achieve, but more difficult to evaluate. However, the administrative culture of the Ontario bureaucracy is shown to be committed to ensuring that the access and privacy rights of citizens are respected.
Resumo:
This case study examines the impact of a computer information system as it was being implemented in one Ontario hospital. The attitudes of a cross section of the hospital staff acted as a barometer to measure their perceptions of the implementation process. With The Mississauga Hospital in the early stages of an extensive computer implementation project, the opportunity existed to identify staff attitudes about the computer system, overall knowledge and compare the findings with the literature. The goal of the study was to develop a greater base about the affective domain in the relationship between people and the computer system. Eight exploratory questions shaped the focus of the investigation. Data were collected from three sources: a survey questionnaire, focused interviews, and internal hospital documents. Both quantitative and qualitative data were analyzed. Instrumentation in the study consisted of a survey distributed at two points in time to randomly selected hospital employees who represented all staff levels.Other sources of data included hospital documents, and twenty-five focused interviews with staff who replied to both surveys. Leavitt's socio-technical system, with its four subsystems: task, structure, technology, and people was used to classify staff responses to the research questions. The study findings revealed that the majority of respondents felt positive about using the computer as part of their jobs. No apparent correlations were found between sex, age, or staff group and feelings about using the computer. Differences in attitudes, and attitude changes were found in potential relationship to the element of time. Another difference was found in staff group and perception of being involved in the decision making process. These findings and other evidence about the role of change agents in this change process help to emphasize that planning change is one thing, managing the transition is another.
Resumo:
Genetic Programming (GP) is a widely used methodology for solving various computational problems. GP's problem solving ability is usually hindered by its long execution times. In this thesis, GP is applied toward real-time computer vision. In particular, object classification and tracking using a parallel GP system is discussed. First, a study of suitable GP languages for object classification is presented. Two main GP approaches for visual pattern classification, namely the block-classifiers and the pixel-classifiers, were studied. Results showed that the pixel-classifiers generally performed better. Using these results, a suitable language was selected for the real-time implementation. Synthetic video data was used in the experiments. The goal of the experiments was to evolve a unique classifier for each texture pattern that existed in the video. The experiments revealed that the system was capable of correctly tracking the textures in the video. The performance of the system was on-par with real-time requirements.
Resumo:
The magnitude of the cervical cancer problem, coupled with the potential for prevention with recent technological advances, made it imperative to step back and reassess strategic options for dealing with cervical cancer screening in Kenya. The purpose of this qualitative study was: 1) to explore the extent to which the Participatory Action Research (PAR) methodology and the Scenario Based Planning (SBP) method, with the application of analytics, could enable strategic, consequential, informed decision making, and 2) to determine how influential Kenyan decision makers could apply SBP with analytic tools and techniques to make strategic, consequential decisions regarding the implementation of a Cervical Self Sampling Program (CSSP) in both urban and rural settings. The theoretical paradigm for this study was action research; it was experiential, practical, and action oriented, and resulted in co-created knowledge that influenced study participants’ decision making. Action Africa Help International (AAHI) and Brock University collaborated with Local Decision Influencing Participants (LDIP’s) to develop innovative strategies on how to implement the CSSP. SBP tools, along with traditional approaches to data collection and analysis, were applied to collect, visualize and analyze predominately qualitative data. Outputs from the study included: a) a generic implementation scenario for a CSSP (along with scenarios unique to urban and rural settings), and b) 10 strategic directions and 22 supporting implementation strategies that address the variables of: 1) technical viability, 2) political support, 3) affordability, 4) logistical feasibility, 5) social acceptability, and 6) transformation/sustainability. In addition, study participants’ capacity to effectively engage in predictive/prescriptive strategic decision making was strengthened.
Resumo:
Chapter 1 presents a brief note on the state at which the construction industry stands at present, bringing into focus the significance of the critical study. Relevance of the study, area of investigation and objectives of the study are outlined in this chapter. The 2nd chapter presents a review of the literature on the relevant areas. In the third chapter an analysis on time and cost overrun in construction highlighting the major factors responsible for it has been done. A couple of case studies to estimate loss to the nation on account of delay in construction have been presented in the chapter. The need for an appropriate estimate and a competent contractor has been emphasised for improving effectiveness in the project implementation. Certain useful equations and thoughts have been formulated on this area in this chapter that can be followed in State PWD and other Govt. organisations. Case studies on project implementation of major projects undertaken by Government sponsored/supported organizations in Kerala have been dealt with in Chapter 4. A detailed description of the project of Kerala Legislature Complex with a critical analysis has been given in this chapter. A detailed account of the investigations carried out on the construction of International Stadium, a sports project of Greater Cochin Development Authority is included here. The project details of Cochin International Airport at Nedumbassery, its promoters and contractors are also discussed in Chapter 4. Various aspects of implementation which led the above projects successful have been discussed in chapter 5. The data collected were analysed through discussion and perceptions to arrive at certain conclusions. The emergence of front-loaded contract and its impact on economics of the project execution are dealt with in this chapter. Analysis of delays in respect of the various project narrated in chapter 3 has been done here. The root causes of the project time and overrun and its remedial measures are also enlisted in this chapter. Study of cost and time overrun of any construction project IS a part of construction management. Under the present environment of heavy investment on construction activities in India, the consequences of mismanagement many a time lead to excessive expenditure which are not be avoidable. Cost consciousness, therefore has to be keener than ever before. Optimization in investment can be achieved by improved dynamism in construction management. The successful completion of coristruction projects within the specified programme, optimizing three major attributes of the process - quality, schedule and costs - has become the most valuable and challenging task for the engineer - managers to perform. So, the various aspects of construction management such as cost control, schedule control, quality assurance, management techniques etc. have also been discussed in this fifth chapter. Chapter 6 summarises the conclusions drawn from the above criticalr1 of rhajor construction projects in Kerala.
Resumo:
Poor project planning, implementation and control and the subsequent cost and time overruns are ubiquitous features that have been posing serious concern at all levels - state, national and international. It results in wastage of the nation's scarce resources and retards the socio-economic progress. Although several studies peripheral on project overruns have been made at the national level, no serious attempt has been made at the state level to identify the magnitude of overruns, their causes and impacts on industrial projects. The present study "Time and Cost Overruns of Industrial Projects in Kerala" is an earnest attempt to probe in depth the time and cost overruns and their impact on industrial projects. The study places emphasise on the identification of the real reasons behind the cost and time overruns. It also covers the present project management practices of industrial projects in Kerala.
Resumo:
Land use is a crucial link between human activities and the natural environment and one of the main driving forces of global environmental change. Large parts of the terrestrial land surface are used for agriculture, forestry, settlements and infrastructure. Given the importance of land use, it is essential to understand the multitude of influential factors and resulting land use patterns. An essential methodology to study and quantify such interactions is provided by the adoption of land-use models. By the application of land-use models, it is possible to analyze the complex structure of linkages and feedbacks and to also determine the relevance of driving forces. Modeling land use and land use changes has a long-term tradition. In particular on the regional scale, a variety of models for different regions and research questions has been created. Modeling capabilities grow with steady advances in computer technology, which on the one hand are driven by increasing computing power on the other hand by new methods in software development, e.g. object- and component-oriented architectures. In this thesis, SITE (Simulation of Terrestrial Environments), a novel framework for integrated regional sland-use modeling, will be introduced and discussed. Particular features of SITE are the notably extended capability to integrate models and the strict separation of application and implementation. These features enable efficient development, test and usage of integrated land-use models. On its system side, SITE provides generic data structures (grid, grid cells, attributes etc.) and takes over the responsibility for their administration. By means of a scripting language (Python) that has been extended by language features specific for land-use modeling, these data structures can be utilized and manipulated by modeling applications. The scripting language interpreter is embedded in SITE. The integration of sub models can be achieved via the scripting language or by usage of a generic interface provided by SITE. Furthermore, functionalities important for land-use modeling like model calibration, model tests and analysis support of simulation results have been integrated into the generic framework. During the implementation of SITE, specific emphasis was laid on expandability, maintainability and usability. Along with the modeling framework a land use model for the analysis of the stability of tropical rainforest margins was developed in the context of the collaborative research project STORMA (SFB 552). In a research area in Central Sulawesi, Indonesia, socio-environmental impacts of land-use changes were examined. SITE was used to simulate land-use dynamics in the historical period of 1981 to 2002. Analogous to that, a scenario that did not consider migration in the population dynamics, was analyzed. For the calculation of crop yields and trace gas emissions, the DAYCENT agro-ecosystem model was integrated. In this case study, it could be shown that land-use changes in the Indonesian research area could mainly be characterized by the expansion of agricultural areas at the expense of natural forest. For this reason, the situation had to be interpreted as unsustainable even though increased agricultural use implied economic improvements and higher farmers' incomes. Due to the importance of model calibration, it was explicitly addressed in the SITE architecture through the introduction of a specific component. The calibration functionality can be used by all SITE applications and enables largely automated model calibration. Calibration in SITE is understood as a process that finds an optimal or at least adequate solution for a set of arbitrarily selectable model parameters with respect to an objective function. In SITE, an objective function typically is a map comparison algorithm capable of comparing a simulation result to a reference map. Several map optimization and map comparison methodologies are available and can be combined. The STORMA land-use model was calibrated using a genetic algorithm for optimization and the figure of merit map comparison measure as objective function. The time period for the calibration ranged from 1981 to 2002. For this period, respective reference land-use maps were compiled. It could be shown, that an efficient automated model calibration with SITE is possible. Nevertheless, the selection of the calibration parameters required detailed knowledge about the underlying land-use model and cannot be automated. In another case study decreases in crop yields and resulting losses in income from coffee cultivation were analyzed and quantified under the assumption of four different deforestation scenarios. For this task, an empirical model, describing the dependence of bee pollination and resulting coffee fruit set from the distance to the closest natural forest, was integrated. Land-use simulations showed, that depending on the magnitude and location of ongoing forest conversion, pollination services are expected to decline continuously. This results in a reduction of coffee yields of up to 18% and a loss of net revenues per hectare of up to 14%. However, the study also showed that ecological and economic values can be preserved if patches of natural vegetation are conservated in the agricultural landscape. -----------------------------------------------------------------------
Resumo:
This work introduced the novel conception of complex coupled hybrid VCSELs for the first time. Alternating organic and inorganic layers in the lasers provide periodic variation of refractive index and optical gain, which enable single mode operation and low threshold of the VCSELs. Model calculations revealed great reduction of the lasing threshold with factors over 30, in comparison with the existing micro-cavity lasers. Tunable green VCSEL has been also designed, implemented and analyzed taking advantage of the broad photoluminescence spectra of the organics. Free standing optical thin films without compressive stress are technologically implemented. Multiple membrane stacks with air gap in between have been fabricated for the implementation of complex coupled VCSEL structures. Complex coupled hybrid VCSEL is a very promising approach to fill the gaps in the green spectral range of the semiconductor lasers.
Resumo:
In drawing a conclusion for this study, care must be taken in generalizing findings since the population of students and teachers investigated were limited to certain levels in the different schools and countries. This study recognized some complexity of the factors underlying the status of school gardening instruction and activities in Germany, Nigeria and the U.S. as inadequate time for decision-making in the process of gardening, motivation of teachers and students. This was seen as the major impediments that influenced the status of gardening in the three countries. However, these factors were considered to have affected students’ mode of participation in the school gardening projects. This research finding suggests that the promotion and encouragement of students in gardening activities will promote vegetable production and increasing the numbers of practical farmers. Gardening has the potential to create opportunities for learning in an environment where children are able to experience nature first hand and to use the shared experience for communication (Bowker & Tearle, 2007). Therefore, the need for students to be encouraged to participate in gardening programs as the benefit will not only reduce the rate of obesity currently spreading among youths, but will contribute to the improve knowledge on science subjects. To build a network between community, parents and schools, a parent’s community approach should be used as the curriculum. The community approach will tighten the link between schools; community members, parents, teachers and students. This will help facilitate a better gardening projects implementation. Through a close collaboration, teachers and students will be able to identify issues affecting communities and undertake action learning in collaboration with community organizations to assess community needs and plan the implementation strategies as parents are part of the community. The sense of efficacy is a central factor in motivational and learning processes that govern educational improvement, standard and performance on complex tasks of both teachers and students. Dedication and willingness are the major stimulator and achievement of a project. Through a stimulator and provision of incentives and facilities, schools can achieve the best in project development. Teachers and principals should be aware that students are the lever for achieving the set goals in schools. Failure to understand what students need will result in achieving zero result. Therefore, it is advised that schools focus more on how to lure students to work through proper collaboration with the parents and community members. Principals and teachers should identify areas where students need to be corrected, helping them to correct the problem will enable them be committed in the schools’ programs.
Resumo:
As exploration of our solar system and outerspace move into the future, spacecraft are being developed to venture on increasingly challenging missions with bold objectives. The spacecraft tasked with completing these missions are becoming progressively more complex. This increases the potential for mission failure due to hardware malfunctions and unexpected spacecraft behavior. A solution to this problem lies in the development of an advanced fault management system. Fault management enables spacecraft to respond to failures and take repair actions so that it may continue its mission. The two main approaches developed for spacecraft fault management have been rule-based and model-based systems. Rules map sensor information to system behaviors, thus achieving fast response times, and making the actions of the fault management system explicit. These rules are developed by having a human reason through the interactions between spacecraft components. This process is limited by the number of interactions a human can reason about correctly. In the model-based approach, the human provides component models, and the fault management system reasons automatically about system wide interactions and complex fault combinations. This approach improves correctness, and makes explicit the underlying system models, whereas these are implicit in the rule-based approach. We propose a fault detection engine, Compiled Mode Estimation (CME) that unifies the strengths of the rule-based and model-based approaches. CME uses a compiled model to determine spacecraft behavior more accurately. Reasoning related to fault detection is compiled in an off-line process into a set of concurrent, localized diagnostic rules. These are then combined on-line along with sensor information to reconstruct the diagnosis of the system. These rules enable a human to inspect the diagnostic consequences of CME. Additionally, CME is capable of reasoning through component interactions automatically and still provide fast and correct responses. The implementation of this engine has been tested against the NEAR spacecraft advanced rule-based system, resulting in detection of failures beyond that of the rules. This evolution in fault detection will enable future missions to explore the furthest reaches of the solar system without the burden of human intervention to repair failed components.
Resumo:
In the 1980’s, many United States industrial organizations started developing new production processes to improve quality, reduce cost, and better respond to customer needs and the pressures of global competition. This new paradigm was coined Lean Production (or simply “Lean”) in the book The Machine That Changed The World published in 1990 by researchers from MIT’s International Motor Vehicle Program. In 1993, a consortium of US defense aerospace firms and the USAF Aeronautical Systems Center, together with the AFRL Materials and Manufacturing Directorate, started the Lean Aircraft Initiative (LAI) at MIT. With expansion in 1998 to include government space products, the program was renamed the Lean Aerospace Initiative. LAI’s vision is to “Significantly reduce the cost and cycle time for military aerospace products throughout the entire value chain while continuing to improve product performance.” By late 1998, 23 industry and 13 government organizations with paying memberships, along with MIT and the UAW were participating in the LAI.
Resumo:
Since the rise of the industrial revolution, there are few challenges that compare in scale and scope with the challenge of implementing lean principles in order to achieve high performance work systems. This report summarize key insights and learning by representatives from a cross section of organizations who are on this journey. Specifically, we report on findings from the first Lean Aircraft Initiative (LAI) Implementation Workshop, which was held on February 5-6, 1997.
Resumo:
The essence of lean is very simple, but from a research and implementation point of view overwhelming. Lean is the search for perfection through the elimination of waste and the insertion of practices that contribute to reduction in cost and schedule while improving performance of products. This concept of lean has wide applicability to a large range of processes, people and organizations, from concept design to the factory floor, from the laborer to the upper management, from the customer to the developer. Progress has been made in implementing and raising the awareness of lean practices at the factory floor. However, the level of implementation and education in other areas, like product development, is very low.
Resumo:
The incorporation of space allows the establishment of a more precise relationship between a contaminating input, a contaminating byproduct and emissions that reach the final receptor. However, the presence of asymmetric information impedes the implementation of the first-best policy. As a solution to this problem a site specific deposit refund system for the contaminating input and the contaminating byproduct are proposed. Moreover, the utilization of a successive optimization technique first over space and second over time enables definition of the optimal intertemporal site specific deposit refund system