961 resultados para inclusions in time scales
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fluctuation-dissipation theorems can be used to predict characteristics of noise from characteristics of the macroscopic response of a system. In the case of gene networks, feedback control determines the "network rigidity," defined as resistance to slow external changes. We propose an effective Fokker-Planck equation that relates gene expression noise to topology and to time scales of the gene network. We distinguish between two situations referred to as normal and inverted time hierarchies. The noise can be buffered by network feedback in the first situation, whereas it can be topology independent in the latter.
Resumo:
In the California Current System, strong mesoscale variability associated with eddies and meanders of the coastal jet play an important role in the biological productivity of the area. To assess the dominant timescales of variability, a wavelet analysis is applied to almost nine years (October 1997 to July 2006) of 1-km-resolution, 5-day-averaged, Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll a (chl a) concentration data. The dominant periods of chlorophyll variance, and how these change in time, are quantified as a function of distance offshore. The maximum variance in chlorophyll occurs with a period of similar to 100-200 days. A seasonal cycle in the timing of peak variance is revealed, with maxima in spring/summer close to shore (20 km) and in autumn/winter 200 km offshore. Interannual variability in the magnitude of chlorophyll variance shows maxima in 1999, 2001, 2002, and 2005. There is a very strong out-of-phase correspondence between the time series of chlorophyll variance and the Pacific Decadal Oscillation (PDO) index. We hypothesize that positive PDO conditions, which reflect weak winds and poor upwelling conditions, result in reduced mesoscale variability in the coastal region, and a subsequent decrease in chlorophyll variance. Although the chlorophyll variance responds to basin-scale forcing, chlorophyll biomass does not necessarily correspond to the phase of the PDO, suggesting that it is influenced more by local-scale processes. The mesoscale variability in the system may be as important as the chl a biomass in determining the potential productivity of higher trophic levels.
Resumo:
Cathodoluminescence (CL) studies have previously shown that some secondary fluid inclusions in luminescent quartz are surrounded by dark, non-luminescent patches, resulting from fracture-sealing by late, trace-element-poor quartz. This finding has led to the tacit generalization that all dark CL patches indicate influx of low temperature, late-stage fluids. In this study we have examined natural and synthetic hydrothermal quartz crystals using CL imaging supplemented by in-situ elemental analysis. The results lead us to propose that all natural, liquid-water-bearing inclusions in quartz, whether trapped on former crystal growth surfaces (i.e., of primary origin) or in healed fractures (i.e., of pseudosecondary or secondary origin), are surrounded by three-dimensional, non-luminescent patches. Cross-cutting relations show that the patches form after entrapment of the fluid inclusions and therefore they are not diagnostic of the timing of fluid entrapment. Instead, the dark patches reveal the mechanism by which fluid inclusions spontaneously approach morphological equilibrium and purify their host quartz over geological time. Fluid inclusions that contain solvent water perpetually dissolve and reprecipitate their walls, gradually adopting low-energy euhedral and equant shapes. Defects in the host quartz constitute solubility gradients that drive physical migration of the inclusions over distances of tens of μm (commonly) up to several mm (rarely). Inclusions thus sequester from their walls any trace elements (e.g., Li, Al, Na, Ti) present in excess of equilibrium concentrations, thereby chemically purifying their host crystals in a process analogous to industrial zone refining. Non-luminescent patches of quartz are left in their wake. Fluid inclusions that contain no liquid water as solvent (e.g., inclusions of low-density H2O vapor or other non-aqueous volatiles) do not undergo this process and therefore do not migrate, do not modify their shapes with time, and are not associated with dark-CL zone-refined patches. This new understanding has implications for the interpretation of solids within fluid inclusions (e.g., Ti- and Al-minerals) and for the elemental analysis of hydrothermal and metamorphic quartz and its fluid inclusions by microbeam methods such as LA-ICPMS and SIMS. As Ti is a common trace element in quartz, its sequestration by fluid inclusions and its depletion in zone-refined patches impacts on applications of the Ti-in-quartz geothermometer.
Resumo:
The spatial and temporal dynamics of seagrasses have been well studied at the leaf to patch scales, however, the link to large spatial extent landscape and population dynamics is still unresolved in seagrass ecology. Traditional remote sensing approaches have lacked the temporal resolution and consistency to appropriately address this issue. This study uses two high temporal resolution time-series of thematic seagrass cover maps to examine the spatial and temporal dynamics of seagrass at both an inter- and intra-annual time scales, one of the first globally to do so at this scale. Previous work by the authors developed an object-based approach to map seagrass cover level distribution from a long term archive of Landsat TM and ETM+ images on the Eastern Banks (~200 km**2), Moreton Bay, Australia. In this work a range of trend and time-series analysis methods are demonstrated for a time-series of 23 annual maps from 1988 to 2010 and a time-series of 16 monthly maps during 2008-2010. Significant new insight was presented regarding the inter- and intra-annual dynamics of seagrass persistence over time, seagrass cover level variability, seagrass cover level trajectory, and change in area of seagrass and cover levels over time. Overall we found that there was no significant decline in total seagrass area on the Eastern Banks, but there was a significant decline in seagrass cover level condition. A case study of two smaller communities within the Eastern Banks that experienced a decline in both overall seagrass area and condition are examined in detail, highlighting possible differences in environmental and process drivers. We demonstrate how trend and time-series analysis enabled seagrass distribution to be appropriately assessed in context of its spatial and temporal history and provides the ability to not only quantify change, but also describe the type of change. We also demonstrate the potential use of time-series analysis products to investigate seagrass growth and decline as well as the processes that drive it. This study demonstrates clear benefits over traditional seagrass mapping and monitoring approaches, and provides a proof of concept for the use of trend and time-series analysis of remotely sensed seagrass products to benefit current endeavours in seagrass ecology.
Resumo:
This paper analyzes the correlation between the fluctuations of the electrical power generated by the ensemble of 70 DC/AC inverters from a 45.6 MW PV plant. The use of real electrical power time series from a large collection of photovoltaic inverters of a same plant is an impor- tant contribution in the context of models built upon simplified assumptions to overcome the absence of such data. This data set is divided into three different fluctuation categories with a clustering proce- dure which performs correctly with the clearness index and the wavelet variances. Afterwards, the time dependent correlation between the electrical power time series of the inverters is esti- mated with the wavelet transform. The wavelet correlation depends on the distance between the inverters, the wavelet time scales and the daily fluctuation level. Correlation values for time scales below one minute are low without dependence on the daily fluctuation level. For time scales above 20 minutes, positive high correlation values are obtained, and the decay rate with the distance depends on the daily fluctuation level. At intermediate time scales the correlation depends strongly on the daily fluctuation level. The proposed methods have been implemented using free software. Source code is available as supplementary material.
Resumo:
In order to implement accurate models for wind power ramp forecasting, ramps need to be previously characterised. This issue has been typically addressed by performing binary ramp/non-ramp classifications based on ad-hoc assessed thresholds. However, recent works question this approach. This paper presents the ramp function, an innovative wavelet- based tool which detects and characterises ramp events in wind power time series. The underlying idea is to assess a continuous index related to the ramp intensity at each time step, which is obtained by considering large power output gradients evaluated under different time scales (up to typical ramp durations). The ramp function overcomes some of the drawbacks shown by the aforementioned binary classification and permits forecasters to easily reveal specific features of the ramp behaviour observed at a wind farm. As an example, the daily profile of the ramp-up and ramp-down intensities are obtained for the case of a wind farm located in Spain
Resumo:
El objetivo de esta tesis es estudiar la dinámica de la capa logarítmica de flujos turbulentos de pared. En concreto, proponemos un nuevo modelo estructural utilizando diferentes tipos de estructuras coherentes: sweeps, eyecciones, grupos de vorticidad y streaks. La herramienta utilizada es la simulación numérica directa de canales turbulentos. Desde los primeros trabajos de Theodorsen (1952), las estructuras coherentes han jugado un papel fundamental para entender la organización y dinámica de los flujos turbulentos. A día de hoy, datos procedentes de simulaciones numéricas directas obtenidas en instantes no contiguos permiten estudiar las propiedades fundamentales de las estructuras coherentes tridimensionales desde un punto de vista estadístico. Sin embargo, la dinámica no puede ser entendida en detalle utilizando sólo instantes aislados en el tiempo, sino que es necesario seguir de forma continua las estructuras. Aunque existen algunos estudios sobre la evolución temporal de las estructuras más pequeñas a números de Reynolds moderados, por ejemplo Robinson (1991), todavía no se ha realizado un estudio completo a altos números de Reynolds y para todas las escalas presentes de la capa logarítmica. El objetivo de esta tesis es llevar a cabo dicho análisis. Los problemas más interesantes los encontramos en la región logarítmica, donde residen las cascadas de vorticidad, energía y momento. Existen varios modelos que intentan explicar la organización de los flujos turbulentos en dicha región. Uno de los más extendidos fue propuesto por Adrian et al. (2000) a través de observaciones experimentales y considerando como elemento fundamental paquetes de vórtices con forma de horquilla que actúan de forma cooperativa para generar rampas de bajo momento. Un modelo alternativo fué ideado por del Álamo & Jiménez (2006) utilizando datos numéricos. Basado también en grupos de vorticidad, planteaba un escenario mucho más desorganizado y con estructuras sin forma de horquilla. Aunque los dos modelos son cinemáticamente similares, no lo son desde el punto de vista dinámico, en concreto en lo que se refiere a la importancia que juega la pared en la creación y vida de las estructuras. Otro punto importante aún sin resolver se refiere al modelo de cascada turbulenta propuesto por Kolmogorov (1941b), y su relación con estructuras coherentes medibles en el flujo. Para dar respuesta a las preguntas anteriores, hemos desarrollado un nuevo método que permite seguir estructuras coherentes en el tiempo y lo hemos aplicado a simulaciones numéricas de canales turbulentos con números de Reynolds lo suficientemente altos como para tener un rango de escalas no trivial y con dominios computacionales lo suficientemente grandes como para representar de forma correcta la dinámica de la capa logarítmica. Nuestros esfuerzos se han desarrollado en cuatro pasos. En primer lugar, hemos realizado una campaña de simulaciones numéricas directas a diferentes números de Reynolds y tamaños de cajas para evaluar el efecto del dominio computacional en las estadísticas de primer orden y el espectro. A partir de los resultados obtenidos, hemos concluido que simulaciones con cajas de longitud 2vr y ancho vr veces la semi-altura del canal son lo suficientemente grandes para reproducir correctamente las interacciones entre estructuras coherentes de la capa logarítmica y el resto de escalas. Estas simulaciones son utilizadas como punto de partida en los siguientes análisis. En segundo lugar, las estructuras coherentes correspondientes a regiones con esfuerzos de Reynolds tangenciales intensos (Qs) en un canal turbulento han sido estudiadas extendiendo a tres dimensiones el análisis de cuadrantes, con especial énfasis en la capa logarítmica y la región exterior. Las estructuras coherentes han sido identificadas como regiones contiguas del espacio donde los esfuerzos de Reynolds tangenciales son más intensos que un cierto nivel. Los resultados muestran que los Qs separados de la pared están orientados de forma isótropa y su contribución neta al esfuerzo de Reynolds medio es nula. La mayor contribución la realiza una familia de estructuras de mayor tamaño y autosemejantes cuya parte inferior está muy cerca de la pared (ligada a la pared), con una geometría compleja y dimensión fractal « 2. Estas estructuras tienen una forma similar a una ‘esponja de placas’, en comparación con los grupos de vorticidad que tienen forma de ‘esponja de cuerdas’. Aunque el número de objetos decae al alejarnos de la pared, la fracción de esfuerzos de Reynolds que contienen es independiente de su altura, y gran parte reside en unas pocas estructuras que se extienden más allá del centro del canal, como en las grandes estructuras propuestas por otros autores. Las estructuras dominantes en la capa logarítmica son parejas de sweeps y eyecciones uno al lado del otro y con grupos de vorticidad asociados que comparten las dimensiones y esfuerzos con los remolinos ligados a la pared propuestos por Townsend. En tercer lugar, hemos estudiado la evolución temporal de Qs y grupos de vorticidad usando las simulaciones numéricas directas presentadas anteriormente hasta números de Reynolds ReT = 4200 (Reynolds de fricción). Las estructuras fueron identificadas siguiendo el proceso descrito en el párrafo anterior y después seguidas en el tiempo. A través de la interseción geométrica de estructuras pertenecientes a instantes de tiempo contiguos, hemos creado gratos de conexiones temporales entre todos los objetos y, a partir de ahí, definido ramas primarias y secundarias, de tal forma que cada rama representa la evolución temporal de una estructura coherente. Una vez que las evoluciones están adecuadamente organizadas, proporcionan toda la información necesaria para caracterizar la historia de las estructuras desde su nacimiento hasta su muerte. Los resultados muestran que las estructuras nacen a todas las distancias de la pared, pero con mayor probabilidad cerca de ella, donde la cortadura es más intensa. La mayoría mantienen tamaños pequeños y no viven mucho tiempo, sin embargo, existe una familia de estructuras que crecen lo suficiente como para ligarse a la pared y extenderse a lo largo de la capa logarítmica convirtiéndose en las estructuras observas anteriormente y descritas por Townsend. Estas estructuras son geométricamente autosemejantes con tiempos de vida proporcionales a su tamaño. La mayoría alcanzan tamaños por encima de la escala de Corrsin, y por ello, su dinámica está controlada por la cortadura media. Los resultados también muestran que las eyecciones se alejan de la pared con velocidad media uT (velocidad de fricción) y su base se liga a la pared muy rápidamente al inicio de sus vidas. Por el contrario, los sweeps se mueven hacia la pared con velocidad -uT y se ligan a ella más tarde. En ambos casos, los objetos permanecen ligados a la pared durante 2/3 de sus vidas. En la dirección de la corriente, las estructuras se desplazan a velocidades cercanas a la convección media del flujo y son deformadas por la cortadura. Finalmente, hemos interpretado la cascada turbulenta, no sólo como una forma conceptual de organizar el flujo, sino como un proceso físico en el cual las estructuras coherentes se unen y se rompen. El volumen de una estructura cambia de forma suave, cuando no se une ni rompe, o lo hace de forma repentina en caso contrario. Los procesos de unión y rotura pueden entenderse como una cascada directa (roturas) o inversa (uniones), siguiendo el concepto de cascada de remolinos ideado por Richardson (1920) y Obukhov (1941). El análisis de los datos muestra que las estructuras con tamaños menores a 30η (unidades de Kolmogorov) nunca se unen ni rompen, es decir, no experimentan el proceso de cascada. Por el contrario, aquellas mayores a 100η siempre se rompen o unen al menos una vez en su vida. En estos casos, el volumen total ganado y perdido es una fracción importante del volumen medio de la estructura implicada, con una tendencia ligeramente mayor a romperse (cascada directa) que a unirse (cascade inversa). La mayor parte de interacciones entre ramas se debe a roturas o uniones de fragmentos muy pequeños en la escala de Kolmogorov con estructuras más grandes, aunque el efecto de fragmentos de mayor tamaño no es despreciable. También hemos encontrado que las roturas tienen a ocurrir al final de la vida de la estructura y las uniones al principio. Aunque los resultados para la cascada directa e inversa no son idénticos, son muy simétricos, lo que sugiere un alto grado de reversibilidad en el proceso de cascada. ABSTRACT The purpose of the present thesis is to study the dynamics of the logarithmic layer of wall-bounded turbulent flows. Specifically, to propose a new structural model based on four different coherent structures: sweeps, ejections, clusters of vortices and velocity streaks. The tool used is the direct numerical simulation of time-resolved turbulent channels. Since the first work by Theodorsen (1952), coherent structures have played an important role in the understanding of turbulence organization and its dynamics. Nowadays, data from individual snapshots of direct numerical simulations allow to study the threedimensional statistical properties of those objects, but their dynamics can only be fully understood by tracking them in time. Although the temporal evolution has already been studied for small structures at moderate Reynolds numbers, e.g., Robinson (1991), a temporal analysis of three-dimensional structures spanning from the smallest to the largest scales across the logarithmic layer has yet to be performed and is the goal of the present thesis. The most interesting problems lie in the logarithmic region, which is the seat of cascades of vorticity, energy, and momentum. Different models involving coherent structures have been proposed to represent the organization of wall-bounded turbulent flows in the logarithmic layer. One of the most extended ones was conceived by Adrian et al. (2000) and built on packets of hairpins that grow from the wall and work cooperatively to gen- ´ erate low-momentum ramps. A different view was presented by del Alamo & Jim´enez (2006), who extracted coherent vortical structures from DNSs and proposed a less organized scenario. Although the two models are kinematically fairly similar, they have important dynamical differences, mostly regarding the relevance of the wall. Another open question is whether such a model can be used to explain the cascade process proposed by Kolmogorov (1941b) in terms of coherent structures. The challenge would be to identify coherent structures undergoing a turbulent cascade that can be quantified. To gain a better insight into the previous questions, we have developed a novel method to track coherent structures in time, and used it to characterize the temporal evolutions of eddies in turbulent channels with Reynolds numbers high enough to include a non-trivial range of length scales, and computational domains sufficiently long and wide to reproduce correctly the dynamics of the logarithmic layer. Our efforts have followed four steps. First, we have conducted a campaign of direct numerical simulations of turbulent channels at different Reynolds numbers and box sizes, and assessed the effect of the computational domain in the one-point statistics and spectra. From the results, we have concluded that computational domains with streamwise and spanwise sizes 2vr and vr times the half-height of the channel, respectively, are large enough to accurately capture the dynamical interactions between structures in the logarithmic layer and the rest of the scales. These simulations are used in the subsequent chapters. Second, the three-dimensional structures of intense tangential Reynolds stress in plane turbulent channels (Qs) have been studied by extending the classical quadrant analysis to three dimensions, with emphasis on the logarithmic and outer layers. The eddies are identified as connected regions of intense tangential Reynolds stress. Qs are then classified according to their streamwise and wall-normal fluctuating velocities as inward interactions, outward interactions, sweeps and ejections. It is found that wall-detached Qs are isotropically oriented background stress fluctuations, common to most turbulent flows, and do not contribute to the mean stress. Most of the stress is carried by a selfsimilar family of larger wall-attached Qs, increasingly complex away from the wall, with fractal dimensions « 2. They have shapes similar to ‘sponges of flakes’, while vortex clusters resemble ‘sponges of strings’. Although their number decays away from the wall, the fraction of the stress that they carry is independent of their heights, and a substantial part resides in a few objects extending beyond the centerline, reminiscent of the very large scale motions of several authors. The predominant logarithmic-layer structures are sideby- side pairs of sweeps and ejections, with an associated vortex cluster, and dimensions and stresses similar to Townsend’s conjectured wall-attached eddies. Third, the temporal evolution of Qs and vortex clusters are studied using time-resolved DNS data up to ReT = 4200 (friction Reynolds number). The eddies are identified following the procedure presented above, and then tracked in time. From the geometric intersection of structures in consecutive fields, we have built temporal connection graphs of all the objects, and defined main and secondary branches in a way that each branch represents the temporal evolution of one coherent structure. Once these evolutions are properly organized, they provide the necessary information to characterize eddies from birth to death. The results show that the eddies are born at all distances from the wall, although with higher probability near it, where the shear is strongest. Most of them stay small and do not last for long times. However, there is a family of eddies that become large enough to attach to the wall while they reach into the logarithmic layer, and become the wall-attached structures previously observed in instantaneous flow fields. They are geometrically self-similar, with sizes and lifetimes proportional to their distance from the wall. Most of them achieve lengths well above the Corrsin’ scale, and hence, their dynamics are controlled by the mean shear. Eddies associated with ejections move away from the wall with an average velocity uT (friction velocity), and their base attaches very fast at the beginning of their lives. Conversely, sweeps move towards the wall at -uT, and attach later. In both cases, they remain attached for 2/3 of their lives. In the streamwise direction, eddies are advected and deformed by the local mean velocity. Finally, we interpret the turbulent cascade not only as a way to conceptualize the flow, but as an actual physical process in which coherent structures merge and split. The volume of an eddy can change either smoothly, when they are not merging or splitting, or through sudden changes. The processes of merging and splitting can be thought of as a direct (when splitting) or an inverse (when merging) cascade, following the ideas envisioned by Richardson (1920) and Obukhov (1941). It is observed that there is a minimum length of 30η (Kolmogorov units) above which mergers and splits begin to be important. Moreover, all eddies above 100η split and merge at least once in their lives. In those cases, the total volume gained and lost is a substantial fraction of the average volume of the structure involved, with slightly more splits (direct cascade) than mergers. Most branch interactions are found to be the shedding or absorption of Kolmogorov-scale fragments by larger structures, but more balanced splits or mergers spanning a wide range of scales are also found to be important. The results show that splits are more probable at the end of the life of the eddy, while mergers take place at the beginning of the life. Although the results for the direct and the inverse cascades are not identical, they are found to be very symmetric, which suggests a high degree of reversibility of the cascade process.
Resumo:
Conventional tools for measurement of laser spectra (e.g. optical spectrum analysers) capture data averaged over a considerable time period. However, the generation spectrum of many laser types may involve spectral dynamics whose relatively fast time scale is determined by their cavity round trip period, calling for instrumentation featuring both high temporal and spectral resolution. Such real-time spectral characterisation becomes particularly challenging if the laser pulses are long, or they have continuous or quasi-continuous wave radiation components. Here we combine optical heterodyning with a technique of spatiooral intensity measurements that allows the characterisation of such complex sources. Fast, round-trip-resolved spectral dynamics of cavity-based systems in real-time are obtained, with temporal resolution of one cavity round trip and frequency resolution defined by its inverse (85 ns and 24 MHz respectively are demonstrated). We also show how under certain conditions for quasi-continuous wave sources, the spectral resolution could be further increased by a factor of 100 by direct extraction of phase information from the heterodyned dynamics or by using double time scales within the spectrogram approach.
Resumo:
Light rainfall is the baseline input to the annual water budget in mountainous landscapes through the tropics and at mid-latitudes. In the Southern Appalachians, the contribution from light rainfall ranges from 50-60% during wet years to 80-90% during dry years, with convective activity and tropical cyclone input providing most of the interannual variability. The Southern Appalachians is a region characterized by rich biodiversity that is vulnerable to land use/land cover changes due to its proximity to a rapidly growing population. Persistent near surface moisture and associated microclimates observed in this region has been well documented since the colonization of the area in terms of species health, fire frequency, and overall biodiversity. The overarching objective of this research is to elucidate the microphysics of light rainfall and the dynamics of low level moisture in the inner region of the Southern Appalachians during the warm season, with a focus on orographically mediated processes. The overarching research hypothesis is that physical processes leading to and governing the life cycle of orographic fog, low level clouds, and precipitation, and their interactions, are strongly tied to landform, land cover, and the diurnal cycles of flow patterns, radiative forcing, and surface fluxes at the ridge-valley scale. The following science questions will be addressed specifically: 1) How do orographic clouds and fog affect the hydrometeorological regime from event to annual scale and as a function of terrain characteristics and land cover?; 2) What are the source areas, governing processes, and relevant time-scales of near surface moisture convergence patterns in the region?; and 3) What are the four dimensional microphysical and dynamical characteristics, including variability and controlling factors and processes, of fog and light rainfall? The research was conducted with two major components: 1) ground-based high-quality observations using multi-sensor platforms and 2) interpretive numerical modeling guided by the analysis of the in situ data collection. Findings illuminate a high level of spatial – down to the ridge scale - and temporal – from event to annual scale - heterogeneity in observations, and a significant impact on the hydrological regime as a result of seeder-feeder interactions among fog, low level clouds, and stratiform rainfall that enhance coalescence efficiency and lead to significantly higher rainfall rates at the land surface. Specifically, results show that enhancement of an event up to one order of magnitude in short-term accumulation can occur as a result of concurrent fog presence. Results also show that events are modulated strongly by terrain characteristics including elevation, slope, geometry, and land cover. These factors produce interactions between highly localized flows and gradients of temperature and moisture with larger scale circulations. Resulting observations of DSD and rainfall patterns are stratified by region and altitude and exhibit clear diurnal and seasonal cycles.
Resumo:
The study objective was to examine differentials in time trends and predictors of deaths assigned to symptoms, signs and ill-defined conditions in comparison with other ill-defined conditions (ill-defined cardiovascular diseases, cancer and injury) in a population-based cohort study. Of 1,606 baseline participants aged 60 years and over, 524 died during 9-year follow-up and were included in this study. Deaths coded to "symptoms" declined by 77% in the period from 1997-1999 to 2003-2005. Deaths coded to other ill-defined conditions remained unchanged. The calendar period 2003-2005 (RR = 0.25; 95%CI: 0.09-0.70) and in-hospital deaths (RR = 0.16; 95%CI: 0.08-0.34) were independently associated with "symptoms", but not with other ill-defined conditions. Baseline socio-demographic characteristics and chronic diseases were not predictors of these outcomes. International and national agencies have focused on the reduction of deaths assigned to "symptoms" to improve the registration of vital statistics, while other ill-defined conditions have received little attention. Our data provide evidence supporting the need to redress this situation.
Resumo:
The CoRoT satellite exoplanetary team announces its sixth transiting planet in this paper. We describe and discuss the satellite observations as well as the complementary ground-based observations - photometric and spectroscopic - carried out to assess the planetary nature of the object and determine its specific physical parameters. The discovery reported here is a ""hot Jupiter"" planet in an 8.9d orbit, 18 stellar radii, or 0.08 AU, away from its primary star, which is a solar-type star (F9V) with an estimated age of 3.0 Gyr. The planet mass is close to 3 times that of Jupiter. The star has a metallicity of 0.2 dex lower than the Sun, and a relatively high (7)Li abundance. While the light curve indicates a much higher level of activity than, e. g., the Sun, there is no sign of activity spectroscopically in e. g., the [Ca II] H&K lines.
Resumo:
Quantum field theory with an external background can be considered as a consistent model only if backreaction is relatively small with respect to the background. To find the corresponding consistency restrictions on an external electric field and its duration in QED and QCD, we analyze the mean-energy density of quantized fields for an arbitrary constant electric field E, acting during a large but finite time T. Using the corresponding asymptotics with respect to the dimensionless parameter eET(2), one can see that the leading contributions to the energy are due to the creation of particles by the electric field. Assuming that these contributions are small in comparison with the energy density of the electric background, we establish the above-mentioned restrictions, which determine, in fact, the time scales from above of depletion of an electric field due to the backreaction.
Resumo:
The variability of the meridional overturning circulation (MOC) in the upper tropical Atlantic basin is investigated using a reduced-gravity model in a simplified domain. Four sets of idealized numerical experiments are performed: (i) switch-on of the MOC until a fixed value when a constant northward flow is applied along the western boundary; (ii) MOC with a variable flow; (iii) MOC in a quasi-steady flow; and (iv) shutdown of the MOC in the Northern Hemisphere. Results from experiments (i) show that eddies are generated at the equatorial region by shear instability and detached northward; eddies are responsible for an enhancement of the mean flow and the variability of the MOC. Results from experiments (ii) show a transitional behavior of the MOC related to the eddy generation in interannual-decadal time scales as the Reynolds number varies due to the variations in the MOC. In experiments (iii), a critical Reynolds number Re(c) around 30 is found, above which eddies are generated. Experiments (iv) demonstrate that even after the collapse of MOC in the Northern Hemisphere, eddies can still be generated and carry energy across the equator into the Northern Hemisphere; these eddies act to attenuate the impact of the MOC shutdown on short time scales. The results described here may be particularly pertinent to ocean general circulation models in which the Reynolds number lies close to the bifurcation point separating the laminar and turbulent regimes.