859 resultados para graphical attractiveness


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the context of increasing demand for potable water and the depletion of water resources, stormwater is a logical alternative. However, stormwater contains pollutants, among which metals are of particular interest due to their toxicity and persistence in the environment. Hence, it is imperative to remove toxic metals in stormwater to the levels prescribed by drinking water guidelines for potable use. Consequently, various techniques have been proposed, among which sorption using low cost sorbents is economically viable and environmentally benign in comparison to other techniques. However, sorbents show affinity towards certain toxic metals, which results in poor removal of other toxic metals. It was hypothesised in this study that a mixture of sorbents that have different metal affinity patterns can be used for the efficient removal of a range of toxic metals commonly found in stormwater. The performance of six sorbents in the sorption of Al, Cr, Cu, Pb, Ni, Zn and Cd, which are the toxic metals commonly found in urban stormwater, was investigated to select suitable sorbents for creating the mixtures. For this purpose, a multi criteria analytical protocol was developed using the decision making methods: PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluations) and GAIA (Graphical Analysis for Interactive Assistance). Zeolite and seaweed were selected for the creation of trial mixtures based on their metal affinity pattern and the performance on predetermined selection criteria. The metal sorption mechanisms employed by seaweed and zeolite were defined using kinetics, isotherm and thermodynamics parameters, which were determined using the batch sorption experiments. Additionally, the kinetics rate-limiting steps were identified using an innovative approach using GAIA and Spearman correlation techniques developed as part of the study, to overcome the limitation in conventional graphical methods in predicting the degree of contribution of each kinetics step in limiting the overall metal removal rate. The sorption kinetics of zeolite was found to be primarily limited by intraparticle diffusion followed by the sorption reaction steps, which were governed mainly by the hydrated ionic diameter of metals. The isotherm study indicated that the metal sorption mechanism of zeolite was primarily of a physical nature. The thermodynamics study confirmed that the energetically favourable nature of sorption increased in the order of Zn < Cu < Cd < Ni < Pb < Cr < Al, which is in agreement with metal sorption affinity of zeolite. Hence, sorption thermodynamics has an influence on the metal sorption affinity of zeolite. On the other hand, the primary kinetics rate-limiting step of seaweed was the sorption reaction process followed by intraparticle diffusion. The boundary layer diffusion was also found to limit the metal sorption kinetics at low concentration. According to the sorption isotherm study, Cd, Pb, Cr and Al were sorbed by seaweed via ion exchange, whilst sorption of Ni occurred via physisorption. Furthermore, ionic bonding is responsible for the sorption of Zn. The thermodynamics study confirmed that sorption by seaweed was energetically favourable in the order of Zn < Cu < Cd < Cr . Al < Pb < Ni. However, this did not agree with the affinity series derived for seaweed suggesting a limited influence of sorption thermodynamics on metal affinity for seaweed. The investigation of zeolite-seaweed mixtures indicated that mixing sorbents have an effect on the kinetics rates and the sorption affinity. Additionally, the theoretical relationships were derived to predict the boundary layer diffusion rate, intraparticle diffusion rate, the sorption reaction rate and the enthalpy of mixtures based on that of individual sorbents. In general, low coefficient of determination (R2) for the relationships between theoretical and experimental data indicated that the relationships were not statistically significant. This was attributed to the heterogeneity of the properties of sorbents. Nevertheless, in relative terms, the intraparticle diffusion rate, sorption reaction rate and enthalpy of sorption had higher R2 values than the boundary layer diffusion rate suggesting that there was some relationship between the former set of parameters of mixtures and that of sorbents. The mixture, which contained 80% of zeolite and 20% of seaweed, showed similar affinity for the sorption of Cu, Ni, Cd, Cr and Al, which was attributed to approximately similar sorption enthalpy of the metal ions. Therefore, it was concluded that the seaweed-zeolite mixture can be used to obtain the same affinity for various metals present in a multi metal system provided the metal ions have similar enthalpy during sorption by the mixture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a need for an accurate real-time quantitative system that would enhance decision-making in the treatment of osteoarthritis. To achieve this objective, significant research is required that will enable articular cartilage properties to be measured and categorized for health and functionality without the need for laboratory tests involving biopsies for pathological evaluation. Such a system would provide the capability of access to the internal condition of the cartilage matrix and thus extend the vision-based arthroscopy that is currently used beyond the subjective evaluation of surgeons. The system required must be able to non-destructively probe the entire thickness of the cartilage and its immediate subchondral bone layer. In this thesis, near infrared spectroscopy is investigated for the purpose mentioned above. The aim is to relate it to the structure and load bearing properties of the cartilage matrix to the near infrared absorption spectrum and establish functional relationships that will provide objective, quantitative and repeatable categorization of cartilage condition outside the area of visible degradation in a joint. Based on results from traditional mechanical testing, their innovative interpretation and relationship with spectroscopic data, new parameters were developed. These were then evaluated for their consistency in discriminating between healthy viable and degraded cartilage. The mechanical and physico-chemical properties were related to specific regions of the near infrared absorption spectrum that were identified as part of the research conducted for this thesis. The relationships between the tissue's near infrared spectral response and the new parameters were modeled using multivariate statistical techniques based on partial least squares regression (PLSR). With significantly high levels of statistical correlation, the modeled relationships were demonstrated to possess considerable potential in predicting the properties of unknown tissue samples in a quick and non-destructive manner. In order to adapt near infrared spectroscopy for clinical applications, a balance between probe diameter and the number of active transmit-receive optic fibres must be optimized. This was achieved in the course of this research, resulting in an optimal probe configuration that could be adapted for joint tissue evaluation. Furthermore, as a proof-of-concept, a protocol for obtaining the new parameters from the near infrared absorption spectra of cartilage was developed and implemented in a graphical user interface (GUI)-based software, and used to assess cartilage-on-bone samples in vitro. This conceptual implementation has been demonstrated, in part by the individual parametric relationship with the near infrared absorption spectrum, the capacity of the proposed system to facilitate real-time, non-destructive evaluation of cartilage matrix integrity. In summary, the potential of the optical near infrared spectroscopy for evaluating articular cartilage and bone laminate has been demonstrated in this thesis. The approach could have a spin-off for other soft tissues and organs of the body. It builds on the earlier work of the group at QUT, enhancing the near infrared component of the ongoing research on developing a tool for cartilage evaluation that goes beyond visual and subjective methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many common diseases, such as the flu and cardiovascular disease, increase markedly in winter and dip in summer. These seasonal patterns have been part of life for millennia and were first noted in ancient Greece by both Hippocrates and Herodotus. Recent interest has focused on climate change, and the concern that seasons will become more extreme with harsher winter and summer weather. We describe a set of R functions designed to model seasonal patterns in disease. We illustrate some simple descriptive and graphical methods, a more complex method that is able to model non-stationary patterns, and the case–crossover for controlling for seasonal confounding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contemporary mathematics education attempts to instil within learners the conceptualization of mathematics as a highly organized and inter-connected set of ideas. To support this, a means to graphically represent this organization of ideas is presented which reflects the cognitive mechanisms that shape a learner’s understanding. This organisation of information may then be analysed, with the view to informing the design of mathematics instruction in face-to-face and/or computer-mediated learning environments. However, this analysis requires significant work to develop both theory and practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Process modelling – the design and use of graphical documentations of an organisation’s business processes – is a key method to document and use information about business processes in organisational projects. Still, despite current interest in process modelling, this area of study still faces essential challenges. One of the key unanswered questions concerns the impact of process modelling in organisational practice. Process modelling initiatives call for tangible results in the form of returns on the substantial investments that organisations undertake to achieve improved processes. This study explores the impact of process model use on end-users and its contribution to organisational success. We posit that the use of conceptual models creates impact in organisational process teams. We also report on a set of case studies in which we explore tentative evidence for the development of impact of process model use. The results of this work provide a better understanding of process modelling impact from information practices and also lead to insights into how organisations should conduct process modelling initiatives in order to achieve an optimum return on their investment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

miRDeep and its varieties are widely used to quantify known and novel micro RNA (miRNA) from small RNA sequencing (RNAseq). This article describes miRDeep*, our integrated miRNA identification tool, which is modeled off miRDeep, but the precision of detecting novel miRNAs is improved by introducing new strategies to identify precursor miRNAs. miRDeep* has a user-friendly graphic interface and accepts raw data in FastQ and Sequence Alignment Map (SAM) or the binary equivalent (BAM) format. Known and novel miRNA expression levels, as measured by the number of reads, are displayed in an interface, which shows each RNAseq read relative to the pre-miRNA hairpin. The secondary pre-miRNA structure and read locations for each predicted miRNA are shown and kept in a separate figure file. Moreover, the target genes of known and novel miRNAs are predicted using the TargetScan algorithm, and the targets are ranked according to the confidence score. miRDeep* is an integrated standalone application where sequence alignment, pre-miRNA secondary structure calculation and graphical display are purely Java coded. This application tool can be executed using a normal personal computer with 1.5 GB of memory. Further, we show that miRDeep* outperformed existing miRNA prediction tools using our LNCaP and other small RNAseq datasets. miRDeep* is freely available online at http://www.australianprostatecentre.org/research/software/mirdeep-star

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The challenge of persistent appearance-based navigation and mapping is to develop an autonomous robotic vision system that can simultaneously localize, map and navigate over the lifetime of the robot. However, the computation time and memory requirements of current appearance-based methods typically scale not only with the size of the environment but also with the operation time of the platform; also, repeated revisits to locations will develop multiple competing representations which reduce recall performance. In this paper we present a solution to the persistent localization, mapping and global path planning problem in the context of a delivery robot in an office environment over a one-week period. Using a graphical appearance-based SLAM algorithm, CAT-Graph, we demonstrate constant time and memory loop closure detection with minimal degradation during repeated revisits to locations, along with topological path planning that improves over time without using a global metric representation. We compare the localization performance of CAT-Graph to openFABMAP, an appearance-only SLAM algorithm, and the path planning performance to occupancy-grid based metric SLAM. We discuss the limitations of the algorithm with regard to environment change over time and illustrate how the topological graph representation can be coupled with local movement behaviors for persistent autonomous robot navigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose – The purpose of this study is to examine the associations between attitudes to academic achievement and post university success using perceptions of attractiveness, gender, ethnic identity, personality, and social acceptance as antecedents. Design/methodology/approach – An online questionnaire was completed by male (N=116) and female (N=126) university students from various cultural backgrounds. To evaluate the proposed relationships, multiple regression analysis was used. Findings – The findings suggest that attractiveness is related to attitudes to academic achievement and success through its association with social appeal and acceptance. Ethnic identity is also related to both academic achievement and post university success. Personality is not positively related to academic achievement. Finally, social acceptance is positively related to academic achievement for males and to success for females. Research limitations/implications – Whilst the survey targeted students from various cultural backgrounds studying in Australia, it did not look at university students from other countries. A cross-cultural perspective could reveal further differences in attitudes. Originality/value – This study links attractiveness and academic achievement theories. The findings have implications for tertiary institutions and suggest academics and policy-makers to vigorously promote core personality and values such as intelligence, communication skills, and sincerity, rather than allow superficial values such as attractiveness to be placed at the centre stage of students' endeavour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research examines the effects of expectation (perceived attractiveness) on satisfaction, place identity, and place dependence. Place identity and place dependence are viewed as relational components of choice and relate to deeper needs. This study proposes that these two relational components depend on transactional expectations, which are emergent and determined by past experiences and visitor goals. In a theoretically elaborated and tested Structural Equation Model (SEM) this study assumes that these relationships vary according to intentions to return. The study addresses the conditions under which loyalty intentions influence the deeper place attachments (place identity and place dependence) that visitors associate with attractive cultural and natural destinations. The model is tested on a sample of 504 international tourists visiting Tanzania during fall 2010, and explains 59% of variance in the predicted dependent variables. The results are linked to a discussion on loyalty programs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new approach for the inclusion of human expert cognition into autonomous trajectory planning for unmanned aerial systems (UASs) operating in low-altitude environments. During typical UAS operations, multiple objectives may exist; therefore, the use of multicriteria decision aid techniques can potentially allow for convergence to trajectory solutions which better reflect overall mission requirements. In that context, additive multiattribute value theory has been applied to optimize trajectories with respect to multiple objectives. A graphical user interface was developed to allow for knowledge capture from a human decision maker (HDM) through simulated decision scenarios. The expert decision data gathered are converted into value functions and corresponding criteria weightings using utility additive theory. The inclusion of preferences elicited from HDM data within an automated decision system allows for the generation of trajectories which more closely represent the candidate HDM decision preferences. This approach has been demonstrated in this paper through simulation using a fixed-wing UAS operating in low-altitude environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: Effective management of multi-resistant organisms is an important issue for hospitals both in Australia and overseas. This study investigates the utility of using Bayesian Network (BN) analysis to examine relationships between risk factors and colonization with Vancomycin Resistant Enterococcus (VRE). Design: Bayesian Network Analysis was performed using infection control data collected over a period of 36 months (2008-2010). Setting: Princess Alexandra Hospital (PAH), Brisbane. Outcome of interest: Number of new VRE Isolates Methods: A BN is a probabilistic graphical model that represents a set of random variables and their conditional dependencies via a directed acyclic graph (DAG). BN enables multiple interacting agents to be studied simultaneously. The initial BN model was constructed based on the infectious disease physician‟s expert knowledge and current literature. Continuous variables were dichotomised by using third quartile values of year 2008 data. BN was used to examine the probabilistic relationships between VRE isolates and risk factors; and to establish which factors were associated with an increased probability of a high number of VRE isolates. Software: Netica (version 4.16). Results: Preliminary analysis revealed that VRE transmission and VRE prevalence were the most influential factors in predicting a high number of VRE isolates. Interestingly, several factors (hand hygiene and cleaning) known through literature to be associated with VRE prevalence, did not appear to be as influential as expected in this BN model. Conclusions: This preliminary work has shown that Bayesian Network Analysis is a useful tool in examining clinical infection prevention issues, where there is often a web of factors that influence outcomes. This BN model can be restructured easily enabling various combinations of agents to be studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent experimental evidence has shown that learning occurs in the host selection behaviour of Helicoverpa armigera (Hübner), one of the world‘s most important agricultural pests. This paper discusses how the occurrence of learning changes our understanding of the host selection behaviour of this polyphagous moth. Host preferences determined from previous laboratory studies may be vastly different from preferences exhibited by moths in the field, where the abundance of particular hosts may be more likely to determine host preference. In support of this prediction, a number of field studies have shown that the ‘attractiveness’ of different hosts for H. armigera oviposition may depend on the relative abundance of these host species. Insect learning may play a fundamental role in the design and application of present and future integrated pest management strategies such as the use of host volatiles, trap crops and resistant crop varieties for monitoring and controlling this important pest species

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This document provides data for the case study presented in our recent earthwork planning papers. Some results are also provided in a graphical format using Excel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current Bayesian network software packages provide good graphical interface for users who design and develop Bayesian networks for various applications. However, the intended end-users of these networks may not necessarily find such an interface appealing and at times it could be overwhelming, particularly when the number of nodes in the network is large. To circumvent this problem, this paper presents an intuitive dashboard, which provides an additional layer of abstraction, enabling the end-users to easily perform inferences over the Bayesian networks. Unlike most software packages, which display the nodes and arcs of the network, the developed tool organises the nodes based on the cause-and-effect relationship, making the user-interaction more intuitive and friendly. In addition to performing various types of inferences, the users can conveniently use the tool to verify the behaviour of the developed Bayesian network. The tool has been developed using QT and SMILE libraries in C++.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physical and chemical properties of biodiesel are influenced by structural features of the fatty acids, such as chain length, degree of unsaturation and branching of the carbon chain. This study investigated if microalgal fatty acid profiles are suitable for biodiesel characterization and species selection through Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA) analysis. Fatty acid methyl ester (FAME) profiles were used to calculate the likely key chemical and physical properties of the biodiesel [cetane number (CN), iodine value (IV), cold filter plugging point, density, kinematic viscosity, higher heating value] of nine microalgal species (this study) and twelve species from the literature, selected for their suitability for cultivation in subtropical climates. An equal-parameter weighted (PROMETHEE-GAIA) ranked Nannochloropsis oculata, Extubocellulus sp. and Biddulphia sp. highest; the only species meeting the EN14214 and ASTM D6751-02 biodiesel standards, except for the double bond limit in the EN14214. Chlorella vulgaris outranked N. oculata when the twelve microalgae were included. Culture growth phase (stationary) and, to a lesser extent, nutrient provision affected CN and IV values of N. oculata due to lower eicosapentaenoic acid (EPA) contents. Application of a polyunsaturated fatty acid (PUFA) weighting to saturation led to a lower ranking of species exceeding the double bond EN14214 thresholds. In summary, CN, IV, C18:3 and double bond limits were the strongest drivers in equal biodiesel parameter-weighted PROMETHEE analysis.