935 resultados para fiber processing
Resumo:
People with schizophrenia perform poorly when recognising facial expressions of emotion, particularly negative emotions such as fear. This finding has been taken as evidence of a “negative emotion specific deficit”, putatively associated with a dysfunction in the limbic system, particularly the amygdala. An alternative explanation is that greater difficulty in recognising negative emotions may reflect a priori differences in task difficulty. The present study uses a differential deficit design to test the above argument. Facial emotion recognition accuracy for seven emotion categories was compared across three groups. Eighteen schizophrenia patients and one group of healthy age- and gender-matched controls viewed identical sets of stimuli. A second group of 18 age- and gender-matched controls viewed a degraded version of the same stimuli. The level of stimulus degradation was chosen so as to equate overall level of accuracy to the schizophrenia patients. Both the schizophrenia group and the degraded image control group showed reduced overall recognition accuracy and reduced recognition accuracy for fearful and sad facial stimuli compared with the intact-image control group. There were no differences in recognition accuracy for any emotion category between the schizophrenia group and the degraded image control group. These findings argue against a negative emotion specific deficit in schizophrenia.
Resumo:
This study was designed to identify the neural networks underlying automatic auditory deviance detection in 10 healthy subjects using functional magnetic resonance imaging. We measured blood oxygenation level-dependent contrasts derived from the comparison of blocks of stimuli presented as a series of standard tones (50 ms duration) alone versus blocks that contained rare duration-deviant tones (100 ms) that were interspersed among a series of frequent standard tones while subjects were watching a silent movie. Possible effects of scanner noise were assessed by a “no tone” condition. In line with previous positron emission tomography and EEG source modeling studies, we found temporal lobe and prefrontal cortical activation that was associated with auditory duration mismatch processing. Data were also analyzed employing an event-related hemodynamic response model, which confirmed activation in response to duration-deviant tones bilaterally in the superior temporal gyrus and prefrontally in the right inferior and middle frontal gyri. In line with previous electrophysiological reports, mismatch activation of these brain regions was significantly correlated with age. These findings suggest a close relationship of the event-related hemodynamic response pattern with the corresponding electrophysiological activity underlying the event-related “mismatch negativity” potential, a putative measure of auditory sensory memory.
Resumo:
By taking the advantage of the excellent mechanical properties and high specific surface area of graphene oxide (GO) sheets, we develop a simple and effective strategy to improve the interlaminar mechanical properties of carbon fiber reinforced plastic (CFRP) laminates. With the incorporation of graphene oxide reinforced epoxy interleaf into the interface of CFRP laminates, the Mode-I fracture toughness and resistance were greatly increased. The experimental results of double cantilever beam (DCB) tests demonstrated that, with 2 g/m2 addition of GO, the Mode-I fracture toughness and resistance of the specimen increase by 170.8% and 108.0%, respectively, compared to those of the plain specimen. The improvement mechanisms were investigated by the observation of fracture surface with scanning electron microscopies. Moreover, finite element analyses were performed based on the cohesive zone model to verify the experimental fracture toughness and to predict the interfacial tensile strength of CFRP laminates.
Resumo:
We extended genetic linkage analysis - an analysis widely used in quantitative genetics - to 3D images to analyze single gene effects on brain fiber architecture. We collected 4 Tesla diffusion tensor images (DTI) and genotype data from 258 healthy adult twins and their non-twin siblings. After high-dimensional fluid registration, at each voxel we estimated the genetic linkage between the single nucleotide polymorphism (SNP), Val66Met (dbSNP number rs6265), of the BDNF gene (brain-derived neurotrophic factor) with fractional anisotropy (FA) derived from each subject's DTI scan, by fitting structural equation models (SEM) from quantitative genetics. We also examined how image filtering affects the effect sizes for genetic linkage by examining how the overall significance of voxelwise effects varied with respect to full width at half maximum (FWHM) of the Gaussian smoothing applied to the FA images. Raw FA maps with no smoothing yielded the greatest sensitivity to detect gene effects, when corrected for multiple comparisons using the false discovery rate (FDR) procedure. The BDNF polymorphism significantly contributed to the variation in FA in the posterior cingulate gyrus, where it accounted for around 90-95% of the total variance in FA. Our study generated the first maps to visualize the effect of the BDNF gene on brain fiber integrity, suggesting that common genetic variants may strongly determine white matter integrity.
Resumo:
We developed an analysis pipeline enabling population studies of HARDI data, and applied it to map genetic influences on fiber architecture in 90 twin subjects. We applied tensor-driven 3D fluid registration to HARDI, resampling the spherical fiber orientation distribution functions (ODFs) in appropriate Riemannian manifolds, after ODF regularization and sharpening. Fitting structural equation models (SEM) from quantitative genetics, we evaluated genetic influences on the Jensen-Shannon divergence (JSD), a novel measure of fiber spatial coherence, and on the generalized fiber anisotropy (GFA) a measure of fiber integrity. With random-effects regression, we mapped regions where diffusion profiles were highly correlated with subjects' intelligence quotient (IQ). Fiber complexity was predominantly under genetic control, and higher in more highly anisotropic regions; the proportion of genetic versus environmental control varied spatially. Our methods show promise for discovering genes affecting fiber connectivity in the brain.
Resumo:
We report the first 3D maps of genetic effects on brain fiber complexity. We analyzed HARDI brain imaging data from 90 young adult twins using an information-theoretic measure, the Jensen-Shannon divergence (JSD), to gauge the regional complexity of the white matter fiber orientation distribution functions (ODF). HARDI data were fluidly registered using Karcher means and ODF square-roots for interpol ation; each subject's JSD map was computed from the spatial coherence of the ODFs in each voxel's neighborhood. We evaluated the genetic influences on generalized fiber anisotropy (GFA) and complexity (JSD) using structural equation models (SEM). At each voxel, genetic and environmental components of data variation were estimated, and their goodness of fit tested by permutation. Color-coded maps revealed that the optimal models varied for different brain regions. Fiber complexity was predominantly under genetic control, and was higher in more highly anisotropic regions. These methods show promise for discovering factors affecting fiber connectivity in the brain.
Resumo:
The study is the first to analyze genetic and environmental factors that affect brain fiber architecture and its genetic linkage with cognitive function. We assessed white matter integrity voxelwise using diffusion tensor imaging at high magnetic field (4 Tesla), in 92 identical and fraternal twins. White matter integrity, quantified using fractional anisotropy (FA), was used to fit structural equation models (SEM) at each point in the brain, generating three-dimensional maps of heritability. We visualized the anatomical profile of correlations between white matter integrity and full-scale, verbal, and performance intelligence quotients (FIQ, VIQ, and PIQ). White matter integrity (FA) was under strong genetic control and was highly heritable in bilateral frontal (a 2 = 0.55, p = 0.04, left; a 2 = 0.74, p = 0.006, right), bilateral parietal (a 2 = 0.85, p < 0.001, left; a 2 = 0.84, p < 0.001, right), and left occipital (a 2 = 0.76, p = 0.003) lobes, and was correlated with FIQ and PIQ in the cingulum, optic radiations, superior fronto- occipital fasciculus, internal capsule, callosal isthmus, and the corona radiata (p = 0.04 for FIQ and p = 0.01 for PIQ, corrected for multiple comparisons). In a cross-trait mapping approach, common genetic factors mediated the correlation between IQ and white matter integrity, suggesting a common physiological mechanism for both, and common genetic determination. These genetic brain maps reveal heritable aspects of white matter integrity and should expedite the discovery of single-nucleotide polymorphisms affecting fiber connectivity and cognition.
Resumo:
There is emerging evidence that alterations in dopaminergic transmission can influence semantic processing, yet the neural mechanisms involved are unknown. The influence of levodopa (L-DOPA) on semantic priming was investigated in healthy individuals (n=20) using event-related functional magnetic resonance imaging with a randomized, double-blind crossover design. Critical prime-target pairs consisted of a lexical ambiguity prime and 1) a target related to the dominant meaning of the prime (e.g., bank-money), 2) a target related to the subordinate meaning (e.g., fence-sword), or 3) an unrelated target (e.g., ball-desk). Behavioral data showed that both dominant and subordinate meanings were primed on placebo. In contrast, there was preserved priming of dominant meanings and no significant priming of subordinate meanings on L-DOPA, the latter associated with decreased anterior cingulate and dorsal prefrontal cortex activity. Dominant meaning activation on L-DOPA was associated with increased activity in the left rolandic operculum and left middle temporal gyrus. These findings suggest that L-DOPA enhances frequency-based semantic focus via prefrontal and temporal modulation of automatic semantic priming and through engagement of anterior cingulate mechanisms supporting attentional/controlled priming.
Resumo:
Studies of semantic context effects in spoken word production have typically distinguished between categorical (or taxonomic) and associative relations. However, associates tend to confound semantic features or morphological representations, such as whole-part relations and compounds (e.g., BOAT-anchor, BEE-hive). Using a picture-word interference paradigm and functional magnetic resonance imaging (fMRI), we manipulated categorical (COW-rat) and thematic (COW-pasture) TARGET-distractor relations in a balanced design, finding interference and facilitation effects on naming latencies, respectively, as well as differential patterns of brain activation compared with an unrelated distractor condition. While both types of distractor relation activated the middle portion of the left middle temporal gyrus (MTG) consistent with retrieval of conceptual or lexical representations, categorical relations involved additional activation of posterior left MTG, consistent with retrieval of a lexical cohort. Thematic relations involved additional activation of the left angular gyrus. These results converge with recent lesion evidence implicating the left inferior parietal lobe in processing thematic relations and may indicate a potential role for this region during spoken word production.
Resumo:
Genetic analysis of diffusion tensor images (DTI) shows great promise in revealing specific genetic variants that affect brain integrity and connectivity. Most genetic studies of DTI analyze voxel-based diffusivity indices in the image space (such as 3D maps of fractional anisotropy) and overlook tract geometry. Here we propose an automated workflow to cluster fibers using a white matter probabilistic atlas and perform genetic analysis on the shape characteristics of fiber tracts. We apply our approach to large study of 4-Tesla high angular resolution diffusion imaging (HARDI) data from 198 healthy, young adult twins (age: 20-30). Illustrative results show heritability for the shapes of several major tracts, as color-coded maps.
Resumo:
We present a new algorithm to compute the voxel-wise genetic contribution to brain fiber microstructure using diffusion tensor imaging (DTI) in a dataset of 25 monozygotic (MZ) twins and 25 dizygotic (DZ) twin pairs (100 subjects total). First, the structural and DT scans were linearly co-registered. Structural MR scans were nonlinearly mapped via a 3D fluid transformation to a geometrically centered mean template, and the deformation fields were applied to the DTI volumes. After tensor re-orientation to realign them to the anatomy, we computed several scalar and multivariate DT-derived measures including the geodesic anisotropy (GA), the tensor eigenvalues and the full diffusion tensors. A covariance-weighted distance was measured between twins in the Log-Euclidean framework [2], and used as input to a maximum-likelihood based algorithm to compute the contributions from genetics (A), common environmental factors (C) and unique environmental ones (E) to fiber architecture. Quanititative genetic studies can take advantage of the full information in the diffusion tensor, using covariance weighted distances and statistics on the tensor manifold.
Resumo:
Fractional anisotropy (FA), a very widely used measure of fiber integrity based on diffusion tensor imaging (DTI), is a problematic concept as it is influenced by several quantities including the number of dominant fiber directions within each voxel, each fiber's anisotropy, and partial volume effects from neighboring gray matter. High-angular resolution diffusion imaging (HARDI) can resolve more complex diffusion geometries than standard DTI, including fibers crossing or mixing. The tensor distribution function (TDF) can be used to reconstruct multiple underlying fibers per voxel, representing the diffusion profile as a probabilistic mixture of tensors. Here we found that DTIderived mean diffusivity (MD) correlates well with actual individual fiber MD, but DTI-derived FA correlates poorly with actual individual fiber anisotropy, and may be suboptimal when used to detect disease processes that affect myelination. Analysis of the TDFs revealed that almost 40% of voxels in the white matter had more than one dominant fiber present. To more accurately assess fiber integrity in these cases, we here propose the differential diffusivity (DD), which measures the average anisotropy based on all dominant directions in each voxel.