999 resultados para drug contraindication


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticles are used for a number of biomedical applications. In this work we report the synthesis of folic acid (FA) modified polyethylene glycol (PEG) functionalized hydroxyapatite (HAp) nanoparticles. The anticancer drug, paclitaxel, is attached to the folic acid modified polyethylene glycol functionalized hydroxyapatite nanoparticles and the in vitro drug release is analyzed. The surface modification and functionalization is confirmed by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA) and UV spectroscopy. The importance of the paper is the investigation of the release behavior of paclitaxel conjugated folic acid modified polyethylene glycol functionalized hydroxyapatite nanoparticles. The results show an initial rapid release and then a sustained release. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hollow microcapsules capable of disintegrating in response to dual biological stimuli have been synthesized from two FDA approved drug molecules. The capsules fabricated from protamine and chondroitin sulphate disintegrate in the presence of either trypsin or hyaluronidase enzymes, which are documented to be simultaneously over-expressed under some pathological conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystal structure of trans-atovaquone (antimalarial drug), its polymorph and its stereoisomer (cis) along with five other derivatives with different functional groups have been analyzed. Based on the conformational features of these compounds and the characteristics of the nature of intermolecular interactions, valuable insights into the atomistic details of protein-inhibitor interactions have been derived by docking studies. Atovaquone and its derivatives pack in the crystal lattice using intermolecular O-H center dot center dot center dot O hydrogen bond dimer motifs supported by surrogate weak interactions including C-H center dot center dot center dot O and C-H center dot center dot center dot Cl hydrogen bonds. The docking results of these molecules with cytochrome bc(1) show preferences to form N-H center dot center dot center dot O, O-H center dot center dot center dot O and O-H center dot center dot center dot Cl hydrogen bonds. The involvement of halogen atoms in the binding pocket appears to be significant and is contrary to the theoretically predicted mechanism of protein-ligand docking reported earlier based on mimicking experimental binding results of stigmatellin with cytochrome bc(1). The significance of subtle energy factors controlled by weak intermolecular interactions appears to play a major role in drug binding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendrimeric nanoparticles are potential drug delivery devices which can enhance the solubility of hydrophobic drugs, thus increasing their bioavailability and sustained release action. A quantitative understanding of the dendrimer-drug interactions can give valuable insight into the solubility and release profile of hydrophobic drug molecules in various solvent conditions. Fully atomistic molecular dynamics (MD) simulations have been performed to study the interactions of G5 PPIEDA (G5 ethylenediamine cored poly(propylene imine)) dendrimer and two well known drugs (Famotidine and Indomethacin) at different pH conditions. The study suggested that at low pH the dendrimer-drug complexes are thermodynamically unstable as compared to neutral and high pH conditions. Calculated Potential of Mean Force (PMF) by umbrella sampling showed that the release of drugs from the dendrimer at low pH is spontaneous, median release at neutral pH and slow release at high pH. In addition, Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) binding free energy calculations were also performed at each umbrella sampling window to identify the various energy contributions. To understand the effect of dendrimer chemistry and topology on the solubility and release profile of drugs, this study is extended to explore the solubility and release profile of phenylbutazone drug complexed with G3 poly(amidoamine) and G4 diaminobutane cored PPI dendrimers. The results indicate that the pH-induced conformational changes in dendrimer, ionization states, dendrimer type and pK(a) of the guest molecules influence the free energy barrier and stability of complexation, and thus regulate drug loading, solubility and release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thirteen new solid forms of etravirine were realized in the process of polymorph and cocrystal/salt screening to improve the solubility of this anti-HIV drug. One anhydrous form, five salts (hydrochloride, mesylate, sulfate, besylate, and tosylate), two cocrystals (with adipic acid and 1,3,5-benzenetricarboxylic acid), and five solvates (formic acid, acetic acid, acetonitrile, and 2:1 and 1:1 methanolates) were obtained. The conformational flexibility of etravirine suggests that it can adopt four different conformations, and among these, two are sterically favorable. However, in all 13 solid forms, the active pharmaceutical ingredient (API) was found to adopt just one conformation. Due to the poor aqueous solubility of the API, the solubilities of the salts and cocrystals were measured in a 50% ethanol water mixture at neutral pH. Compared to the salts, the cocrystals were found to be stable and showed an improvement in solubility with time. All the salts were dissociated within an hour, except the tosylate, which showed 50% phase transformation after 1 h of the slurry experiment. A structure property relationship was examined to analyze the solubility behavior of the solid forms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a simple method to fabricate multifunctional polyelectrolyte thin films to load and deliver the therapeutic drugs. The multilayer thin films were assembled by the electrostatic adsorption of poly (allylamine hydrochloride) (PAH) and dextran sulfate (DS). The silver nanoparticles (Ag NPs) biosynthesized from novel Hybanthus enneaspermus leaf extract as the reducing agent were successfully incorporated into the film. The biosynthesized Ag NPs showed excellent antimicrobial activity against the range of enteropathogens, which could be significantly enhanced when used with commercial antibiotics. The assembled silver nano composite multilayer films showed rupture and deformation when they are exposed to laser. The Ag NPs act as an energy absorption center, locally heat up the film and rupture it under laser treatment. The antibacterial drug, moxifloxacin hydrochloride (MH) was successfully loaded into the multilayer films. The total amount of MH release observed was about 63% which increased to 85% when subjected to laser light exposure. Thus, the polyelectrolyte thin film reported in our study has significant potential in the field of remote activated drug delivery, antibacterial coatings and wound dressings. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a nanoparticle loading protocol to develop a transparent, multifunctional polyelectrolyte multilayer film for externally activated drug and protein delivery. The composite film was designed by alternate adsorption of poly(allylamine hydrochloride) (PAH) and dextran sulfate (DS) on a glass substrate followed by nanoparticle synthesis through a polyol reduction method. The films showed a uniform distribution of spherical silver nanoparticles with an average diameter of 50 +/- 20 nm, which increased to 80 +/- 20 nm when the AgNO3 concentration was increased from 25 to 50 mM. The porous and supramolecular structure of the polyelectrolyte multilayer film was used to immobilize ciprofloxacin hydrochloride (CH) and bovine serum albumin (BSA) within the polymeric network of the film. When exposed to external triggers such as ultrasonication and laser light the loaded films were ruptured and released the loaded BSA and CH. The release of CH is faster than that of BSA due to a higher diffusion rate. Circular dichroism measurements confirmed that there was no significant change in the conformation of released BSA in comparison with native BSA. The fabricated films showed significant antibacterial activity against the bacterial pathogen Staphylococcus aureus. Applications envisioned for such drug-loaded films include drug and vaccine delivery through the transdermal route, antimicrobial or anti-inflammatory coatings on implants and drug-releasing coatings for stents. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: The ability to target conventional drugs efficiently inside cells to kill intraphagosomal bacteria has been a major hurdle in treatment of infective diseases. We aimed to develop an efficient drug delivery system for combating infection caused by Salmonella, a well-known intracellular and intraphagosomal pathogen. Chitosan dextran sulphate (CD) nanocapsules were assessed for their efficiency in delivering drugs against Salmonella. Methods: The CD nanocapsules were prepared using the layer-by-layer method and loaded with ciprofloxacin or ceftriaxone. Antibiotic-loaded nanocapsules were analysed in vitro for their ability to enter epithelial and macrophage cells to kill Salmonella. In vivo pharmacokinetics and organ distribution studies were performed to check the efficiency of the delivery system. The in vivo antibacterial activity of free antibiotic and antibiotic loaded into nanocapsules was tested in a murine salmonellosis model. Results: In vitro and in vivo experiments showed that this delivery system can be used effectively to clear Salmonella infection, CD nanocapsules were successfully employed for efficient targeting and killing of the intracellular pathogen at a dosage significantly lower than that of the free antibiotic. The increased retention time of ciprofloxacin in the blood and organs when it was delivered by CD nanocapsules compared with the conventional routes of administration may be the reason underlying the requirement for a reduced dosage and frequency of antibiotic administration. Conclusions: CD nanocapsules can be used as an efficient drug delivery system to treat intraphagosomal pathogens, especially Salmonella infection, This delivery system might be used effectively for other vacuolar pathogens including Mycobacteria, Brucella and Legionella.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present herein a short tripeptide sequence (Lys-Phe-Gly or KFG) that is situated in the juxtamembrane region of the tyrosine kinase nerve growth factor (Trk NGF) receptors. KFG self-assembles in water and shows a reversible and concentration-dependent switching of nanostructures from nanospheres (vesicles) to nanotubes, as evidenced by dynamic light scattering, transmission electron microscopy, and atomic force microscopy. The morphology change was associated with a transition in the secondary structure. The tripeptide vesicles have inner aqueous compartments and are stable at pH7.4 but rupture rapidly at pH approximate to 6. The pH-sensitive response of the vesicles was exploited for the delivery of a chemotherapeutic anticancer drug, doxorubicin, which resulted in enhanced cytotoxicity for both drug-sensitive and drug-resistant cells. Efficient intracellular release of the drug was confirmed by fluorescence-activated cell sorting analysis, fluorescence microscopy, and confocal microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we present the characterization and performance studies of self-priming peristaltic pump for drug delivery application. Conventional materials and methods have been used to fabricate single cam mechanism based peristaltic micropump. To control the fluid flow precisely in micro liter range, a single cam mechanism has been used instead of conventional roller mechanism. The fabricated pump is suitable for liquid, gas and foam. Using water as a fluid medium, a flow rate of 12.5 mu l/rpm is achieved using a flexible silicone tube of inner diameter 1.5 mm and outer diameter 2.5 mm. Other than water, higher viscosity fluids showed a decrease in the flow rate. The designed micropump exhibits a linear dependence of flow rate in the voltage range of 2.5V to 5V. Drug delivery using micropump demands that the micropump has to pump against the blood pressure (maximum of 25kPa) with constant flow rate. Here the designed pump is able to pump the liquid with a constant flow rate of 500 mu l/min (water) up to a backpressure of 40kPa. It was observed that, by increasing the backpressure above 40kPa, flow rate of the pump gradually decreased to 125 mu l/min at 120kPa. In addition, Micropump based drug delivery demands that the micropump should be normally in closed condition in all the positions to avoid drug leakage and bleeding. Hence, micropump has been characterized for normally closed condition in all positions (0 degrees to 360 degrees). However, a minute leak of 0.14 % was found for an inlet pressure of 140kPa. Also, the normally closed region with no leak is observed up to 60kPa of pressure in all positions (0 degrees to 360 degrees).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fabrication of a mesoporous silica nanoparticle (MSN)-protamine hybrid system (MSN-PRM) is reported that selectively releases drugs in the presence of specific enzyme triggers present in the proximity of cancer cells. The enzyme trigger involved is a protease called trypsin, which is overexpressed in certain specific pathological conditions, such as inflammation and cancer. Overexpression of trypsin is known to be associated with invasion, metastasis, and growth in several cancers, such as leukemia, colon cancer, and colorectal cancer. The current system (MSN-PRM) consists of an MSN support in which mesopores are capped with an FDA-approved peptide drug protamine, which effectively blocks the outward diffusion of the drug molecules from the mesopores of the MSNs. On exposure to the enzyme trigger, the protamine cap disintegrates, opening up the molecular gates and releasing the entrapped drug molecules. The system exhibits minimal premature release in the absence of the trigger and selectively releases the encapsulated drugs in the presence of the proteases secreted by colorectal cancer cells. The ability of the MSN-PRM particles to deliver anticancer drugs to colorectal cancer cells has also been demonstrated. The hydrophobic drug is released into cancer cells subsequent to disintegration of the protamine cap, resulting in cell death. Drug-induced cell death in colorectal cancer cells is significantly enhanced when the hydrophobic drug that is known to degrade in aqueous environments is encapsulated in the MSN-PRM system in comparison to the free drug (P < 0.05). The system, which shows good biocompatibility and selective drug release, is a promising platform for cancer specific drug delivery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peptide based self assembled nanostructures have attracted growing interest in recent years due to their numerous potential applications particularly in biomedical sciences. Di-peptide Phe-Phe was shown previously to self-assemble into nanotube like structures. In this work, we studied the affect of peptide backbone length and conformational flexibility on the self assembly process by using two dipeptides based on the Phe-Phe backbone (beta Phe-Phe and beta Phe-Delta Phe): one containing a flexible beta Phe amino acid, and the other containing both a flexible bPhe as well as a backbone constraining Alpha Phe (alpha,beta-dehydrophenylalanine) amino acid. Electron microscopy and X-ray diffraction experiments revealed that these new di-peptides can self-assemble into nanotubes having different properties than the native Phe-Phe nanotubes. These nanotubes were stable over a broad range of temperatures and the introduction of non-natural amino acids provided them with stability against the action of nonspecific proteases. Moreover, these dipeptides showed no cytotoxicity towards HeLa and L929 cells, and were able to encapsulate small drug molecules. We further showed that anticancerous drug mitoxantrone was more efficient in killing HeLa and B6F10 cells when entrapped in nanotubes as compared to free mitoxantrone. Therefore, these beta-phenylalanine and alpha, beta-dehydrophenylalanine containing dipeptide nanotubes may be useful in the development of biocompatible and proteolytically stable drug delivery vehicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental charge-density analysis of pyrazinamide (a first line antitubercular drug) was performed using high-resolution X-ray diffraction data (sin theta/lambda)(max) = 1.1 angstrom(-1)] measured at 100 (2) K. The structure was solved by direct methods using SHELXS97 and refined by SHELXL97. The total electron density of the pyrazinamide molecule was modeled using the Hansen-Coppens multipole formalism implemented in the XD software. The topological properties of electron density determined from the experiment were compared with the theoretical results obtained from CRYSTAL09 at the B3LYP/6-31G** level of theory. The crystal structure was stabilized by N-H center dot center dot center dot N and N-H center dot center dot center dot O hydrogen bonds, in which the N3-H3B center dot center dot center dot N1 and N3-H3A center dot center dot center dot O1 interactions form two types of dimers in the crystal. Hirshfeld surface analysis was carried out to analyze the intermolecular interactions. The fingerprint plot reveals that the N center dot center dot center dot H and O center dot center dot center dot H hydrogen-bonding interactions contribute 26.1 and 18.4%, respectively, of the total Hirshfeld surface. The lattice energy of the molecule was calculated using density functional theory (B3LYP) methods with the 6-31G** basis set. The molecular electrostatic potential of the pyrazinamide molecule exhibits extended electronegative regions around O1, N1 and N2. The existence of a negative electrostatic potential (ESP) region just above the upper and lower surfaces of the pyrazine ring confirm the pi-electron cloud.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In eubacteria, RecA is essential for recombinational DNA repair and for stalled replication forks to resume DNA synthesis. Recent work has implicated a role for RecA in the development of antibiotic resistance in pathogenic bacteria. Consequently, our goal is to identify and characterize small-molecule inhibitors that target RecA both in vitro and in vivo. We employed ATPase, DNA strand exchange and LexA cleavage assays to elucidate the inhibitory effects of suramin on Mycobacterium tuberculosis RecA. To gain insights into the mechanism of suramin action, we directly visualized the structure of RecA nucleoprotein filaments by atomic force microscopy. To determine the specificity of suramin action in vivo, we investigated its effect on the SOS response by pull-down and western blot assays as well as for its antibacterial activity. We show that suramin is a potent inhibitor of DNA strand exchange and ATPase activities of bacterial RecA proteins with IC50 values in the low micromolar range. Additional evidence shows that suramin inhibits RecA-catalysed proteolytic cleavage of the LexA repressor. The mechanism underlying such inhibitory actions of suramin involves its ability to disassemble RecA-single-stranded DNA filaments. Notably, suramin abolished ciprofloxacin-induced recA gene expression and the SOS response and augmented the bactericidal action of ciprofloxacin. Our findings suggest a strategy to chemically disrupt the vital processes controlled by RecA and hence the promise of small molecules for use against drug-susceptible as well as drug-resistant strains of M. tuberculosis for better infection control and the development of new therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface chemistry and the intrinsic porous architectures of porous substrates play a major role in the design of drug delivery systems. An interesting example is the drug elution characteristic from hydrothermally synthesised titania nanotubes with tunable surface chemistry. The variation in release rates of Ibuprofen (IBU) is largely influenced by the nature of the functional groups on titania nanotubes and pH of suspending medium. To elucidate the extent of interaction between the encapsulated IBU and the functional groups on titania nanotubes, the release profiles have been modelled with an empirical Hill equation. The analysis aided in establishing a probable mechanism for the release of IBU from the titania nanotubes. The study of controlled drug release from TiO2 has wider implication in the context of biomedical engineering. (C) 2014 Elsevier B.V. All rights reserved.