833 resultados para dissimilarity measures
Resumo:
In this paper we study the classification of spatiotemporal pattern of one-dimensional cellular automata (CA) whereas the classification comprises CA rules including their initial conditions. We propose an exploratory analysis method based on the normalized compression distance (NCD) of spatiotemporal patterns which is used as dissimilarity measure for a hierarchical clustering. Our approach is different with respect to the following points. First, the classification of spatiotemporal pattern is comparative because the NCD evaluates explicitly the difference of compressibility among two objects, e.g., strings corresponding to spatiotemporal patterns. This is in contrast to all other measures applied so far in a similar context because they are essentially univariate. Second, Kolmogorov complexity, which underlies the NCD, was used in the classification of CA with respect to their spatiotemporal pattern. Third, our method is semiautomatic allowing us to investigate hundreds or thousands of CA rules or initial conditions simultaneously to gain insights into their organizational structure. Our numerical results are not only plausible confirming previous classification attempts but also shed light on the intricate influence of random initial conditions on the classification results.
Resumo:
The present study examined the consistency over time of individual differences in behavioral and physiological responsiveness of calves to intuitively alarming test situations as well as the relationships between behavioral and physiological measures. Twenty Holstein Friesian heifer calves were individually subjected to the same series of two behavioral and two hypothalamo-pituitary-adrenocortical (HPA) axis reactivity tests at 3, 13 and 26 weeks of age. Novel environment (open field, OF) and novel object (NO) tests involved measurement of behavioral, plasma cortisol and heart rate responses. Plasma ACTH and/or cortisol response profiles were determined after administration of exogenous CRH and ACTH, respectively, in the HPA axis reactivity tests. Principal component analysis (PCA) was used to condense correlated measures within ages into principal components reflecting independent dimensions underlying the calves' reactivity. Cortisol responses to the OF and NO tests were positively associated with the latency to contact and negatively related to the time spent in contact with the NO. Individual differences in scores of a principal component summarizing this pattern of inter-correlations, as well as differences in separate measures of adrenocortical and behavioral reactivity in the OF and NO tests proved highly consistent over time. The cardiac response to confinement in a start box prior to the OF test was positively associated with the cortisol responses to the OF and NO tests at 26 weeks of age. HPA axis reactivity to ACTH or CRH was unrelated to adrenocortical and behavioral responses to novelty. These findings strongly suggest that the responsiveness of calves was mediated by stable individual characteristics. Correlated adrenocortical and behavioral responses to novelty may reflect underlying fearfulness, defining the individual's susceptibility to the elicitation of fear. Other independent characteristics mediating reactivity may include activity or coping style (related to locomotion) and underlying sociality (associated with vocalization). (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The purpose of this study is to compare the inferability of various synthetic as well as real biological regulatory networks. In order to assess differences we apply local network-based measures. That means, instead of applying global measures, we investigate and assess an inference algorithm locally, on the level of individual edges and subnetworks. We demonstrate the behaviour of our local network-based measures with respect to different regulatory networks by conducting large-scale simulations. As inference algorithm we use exemplarily ARACNE. The results from our exploratory analysis allow us not only to gain new insights into the strength and weakness of an inference algorithm with respect to characteristics of different regulatory networks, but also to obtain information that could be used to design novel problem-specific statistical estimators.
Resumo:
Purpose: To quantify decreases in health-related quality of life (HRQoL) for given deterioration in clinical measures of vision; to describe the shape of these relationships; and to test whether the gradients of these relationships change with duration of visual loss.
Resumo:
We introduce a novel graph class we call universal hierarchical graphs (UHG) whose topology can be found numerously in problems representing, e.g., temporal, spacial or general process structures of systems. For this graph class we show, that we can naturally assign two probability distributions, for nodes and for edges, which lead us directly to the definition of the entropy and joint entropy and, hence, mutual information establishing an information theory for this graph class. Furthermore, we provide some results under which conditions these constraint probability distributions maximize the corresponding entropy. Also, we demonstrate that these entropic measures can be computed efficiently which is a prerequisite for every large scale practical application and show some numerical examples. (c) 2007 Elsevier Inc. All rights reserved.