Information theoretic measures of UHG graphs with low computational complexity


Autoria(s): Emmert-Streib, Frank; Dehmer, M.
Data(s)

15/07/2007

Resumo

We introduce a novel graph class we call universal hierarchical graphs (UHG) whose topology can be found numerously in problems representing, e.g., temporal, spacial or general process structures of systems. For this graph class we show, that we can naturally assign two probability distributions, for nodes and for edges, which lead us directly to the definition of the entropy and joint entropy and, hence, mutual information establishing an information theory for this graph class. Furthermore, we provide some results under which conditions these constraint probability distributions maximize the corresponding entropy. Also, we demonstrate that these entropic measures can be computed efficiently which is a prerequisite for every large scale practical application and show some numerical examples. (c) 2007 Elsevier Inc. All rights reserved.

Identificador

http://pure.qub.ac.uk/portal/en/publications/information-theoretic-measures-of-uhg-graphs-with-low-computational-complexity(395f870c-5c37-47e3-9e9b-dabb0ec20671).html

http://dx.doi.org/10.1016/j.amc.2007.02.095

Idioma(s)

eng

Direitos

info:eu-repo/semantics/restrictedAccess

Fonte

Emmert-Streib , F & Dehmer , M 2007 , ' Information theoretic measures of UHG graphs with low computational complexity ' Applied Mathematics and Computation , vol 190 , no. 2 , pp. 1783-1794 . DOI: 10.1016/j.amc.2007.02.095

Palavras-Chave #/dk/atira/pure/subjectarea/asjc/2600/2604 #Applied Mathematics #/dk/atira/pure/subjectarea/asjc/2600/2605 #Computational Mathematics #/dk/atira/pure/subjectarea/asjc/2600/2612 #Numerical Analysis
Tipo

article