861 resultados para direct load control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This presentation investigates quality of service (QoS) and resource productivity implications of transit route passenger loading and travel time. It highlights the value of occupancy load factor as a direct passenger comfort QoS measure. Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia, is used to investigate time series correlation between occupancy load factor and passenger average travel time. Correlation is strong across the entire span of service in both directions. Passengers tend to be making longer, peak direction commuter trips under significantly less comfortable conditions than off-peak. The Transit Capacity and Quality of Service Manual uses segment based load factor as a measure of onboard loading comfort QoS. This paper provides additional insight into QoS by relating the two route based dimensions of occupancy load factor and passenger average travel time together in a two dimensional format, both from the passenger’s and operator’s perspectives. Future research will apply Value of Time to QoS measurement, reflecting perceived passenger comfort through crowding and average time spent onboard. This would also assist in transit service quality econometric modeling. The methodology can be readily applied in a practical setting where AFC data for fixed scheduled routes is available. The study outcomes also provide valuable research and development directions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern power systems have become more complex due to the growth in load demand, the installation of Flexible AC Transmission Systems (FACTS) devices and the integration of new HVDC links into existing AC grids. On the other hand, the introduction of the deregulated and unbundled power market operational mechanism, together with present changes in generation sources including connections of large renewable energy generation with intermittent feature in nature, have further increased the complexity and uncertainty for power system operation and control. System operators and engineers have to confront a series of technical challenges from the operation of currently interconnected power systems. Among the many challenges, how to evaluate the steady state and dynamic behaviors of existing interconnected power systems effectively and accurately using more powerful computational analysis models and approaches becomes one of the key issues in power engineering. The traditional computing techniques have been widely used in various fields for power system analysis with varying degrees of success. The rapid development of computational intelligence, such as neural networks, fuzzy systems and evolutionary computation, provides tools and opportunities to solve the complex technical problems in power system planning, operation and control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The finite element method in principle adaptively divides the continuous domain with complex geometry into discrete simple subdomain by using an approximate element function, and the continuous element loads are also converted into the nodal load by means of the traditional lumping and consistent load methods, which can standardise a plethora of element loads into a typical numerical procedure, but element load effect is restricted to the nodal solution. It in turn means the accurate continuous element solutions with the element load effects are merely restricted to element nodes discretely, and further limited to either displacement or force field depending on which type of approximate function is derived. On the other hand, the analytical stability functions can give the accurate continuous element solutions due to element loads. Unfortunately, the expressions of stability functions are very diverse and distinct when subjected to different element loads that deter the numerical routine for practical applications. To this end, this paper presents a displacement-based finite element function (generalised element load method) with a plethora of element load effects in the similar fashion that never be achieved by the stability function, as well as it can generate the continuous first- and second-order elastic displacement and force solutions along an element without loss of accuracy considerably as the analytical approach that never be achieved by neither the lumping nor consistent load methods. Hence, the salient and unique features of this paper (generalised element load method) embody its robustness, versatility and accuracy in continuous element solutions when subjected to the great diversity of transverse element loads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rehabilitation programs of bone-anchorage prostheses relying either on the OPRA (Integrum, Sweden) or the ILP (Orthodynamics, Germany) fixation involve some forms of static load bearing exercises (LBE). So far, most of biomechanical studies of these static LBEs focused on the direct measurements of the actual forces and moments applied on the OPRA fixation of individuals with transfemoral amputation (TFA). To date, the proof-of-concept of an apparatus to conduct these kinetic measurements has been presented, along with some preliminary data. The understanding of the kinetic data is essential to improve rehabilitation programs as well as the design of upcoming loading frames. However, kinetic information alone is difficult to interpret without concomitant kinematic data. The purpose of this preliminary study was to introduce a qualitative analysis describing the different body postures during LBE for a group of TFAs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The desire to solve problems caused by socket prostheses in transfemoral amputees and the acquired success of osseointegration in the dental application has led to the introduction of osseointegration in the orthopedic surgery. Since its first introduction in 1990 in Gothenburg Sweden the osseointegrated (OI) orthopedic fixation has proven several benefits[1]. The surgery consists of two surgical procedures followed by a lengthy rehabilitation program. The rehabilitation program after an OI implant includes a specific training period with a short training prosthesis. Since mechanical loading is considered to be one of the key factors that influence bone mass and the osseointegration of bone-anchored implants, the rehabilitation program will also need to include some form of load bearing exercises (LBE). To date there are two frequently used commercially available human implants. We can find proof in the literature that load bearing exercises are performed by patients with both types of OI implants. We refer to two articles, a first one written by Dr. Aschoff and all and published in 2010 in the Journal of Bone and Joint Surgery.[2] The second one presented by Hagberg et al in 2009 gives a very thorough description of the rehabilitation program of TFA fitted with an OPRA implant. The progression of the load however is determined individually according to the residual skeleton’s quality, pain level and body weight of the participant.[1] Patients are using a classical bathroom weighing scale to control the load on the implant during the course of their rehabilitation. The bathroom scale is an affordable and easy-to-use device but it has some important shortcomings. The scale provides instantaneous feedback to the patient only on the magnitude of the vertical component of the applied force. The forces and moments applied along and around the three axes of the implant are unknown. Although there are different ways to assess the load on the implant for instance through inverse dynamics in a motion analysis laboratory [3-6] this assessment is challenging. A recent proof- of-concept study by Frossard et al (2009) showed that the shortcomings of the weighing scale can be overcome by a portable kinetic system based on a commercial transducer[7].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The understanding of the loads generated within the prosthetic leg can aid engineers in the design of components and clinicians in the process of rehabilitation. Traditional methods to assess these loads have relied on inverse dynamics. This indirect method estimates the applied load using video recordings and force-plates located at a distance from the region of interest, such as the base of the residuum. The well-known limitations of this method are related to the accuracy of this recursive model and the experimental conditions required (Frossard et al., 2003). Recent developments in sensors (Frossard et al., 2003) and prosthetic fixation (Brånemark et al., 2000) permit the direct measurement of the loads applied on the residuum of transfemoral amputees. In principle, direct measurement should be an appropriate tool for assessing the accuracy of inverse dynamics. The purpose of this paper is to determine the validity of this assumption. The comparative variable used in this study is the velocity of the relative body center of mass (VCOM(t)). The relativity is used to align the static (w.r.t. position) force plate measurement with the dynamic load cell measurement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The understanding of the load applied on the residuum through the prosthesis of individuals with transfemoral amputation (TFA) is essential to address a number of concerns that could strongly reduce their quality of life (e.g., residuum skin lesion, prosthesis fitting, alignment). This inner prosthesis loading could be estimated using a typical gait laboratory relying on inverse dynamics equations. Alternative, technological advances proposed over the last decade enabled direct measurement of this kinetic information in a broad variety of situations that could potentially be more relevant in clinical settings. The purposes of this presentation are (A) to review the literature about recent developments in measure and analyses of inner prosthesis loading of TFA, and (B) to extract information that could potentially contribute to a better evidence-based practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses the issue of sensing and control for stabilizing a swinging load. Our work has focused in particular on the dragline as used for overburden stripping in open-pit coal mining, but many of the principles would also be applicable to construction cranes. Results obtained from experimental work on a full-scale production dragline are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the internet age, copyright owners are increasingly looking to online intermediaries to take steps to prevent copyright infringement. Sometimes these intermediaries are closely tied to the acts of infringement; sometimes – as in the case of ISPs – they are not. In 2012, the Australian High Court decided the Roadshow Films v iiNet case, in which it held that an Australian ISP was not liable under copyright’s authorization doctrine, which asks whether the intermediary has sanctioned, approved or countenanced the infringement. The Australian Copyright Act 1968 directs a court to consider, in these situations, whether the intermediary had the power to prevent the infringement and whether it took any reasonable steps to prevent or avoid the infringement. It is generally not difficult for a court to find the power to prevent infringement – power to prevent can include an unrefined technical ability to disconnect users from the copyright source, such as an ISP terminating users’ internet accounts. In the iiNet case, the High Court eschewed this broad approach in favor of focusing on a notion of control that was influenced by principles of tort law. In tort, when a plaintiff asserts that a defendant should be liable for failing to act to prevent harm caused to the plaintiff by a third party, there is a heavy burden on the plaintiff to show that the defendant had a duty to act. The duty must be clear and specific, and will often hinge on the degree of control that the defendant was able to exercise over the third party. Control in these circumstances relates directly to control over the third party’s actions in inflicting the harm. Thus, in iiNet’s case, the control would need to be directed to the third party’s infringing use of BitTorrent; control over a person’s ability to access the internet is too imprecise. Further, when considering omissions to act, tort law differentiates between the ability to control and the ability to hinder. The ability to control may establish a duty to act, and the court will then look to small measures taken to prevent the harm to determine whether these satisfy the duty. But the ability to hinder will not suffice to establish liability in the absence of control. This article argues that an inquiry grounded in control as defined in tort law would provide a more principled framework for assessing the liability of passive intermediaries in copyright. In particular, it would set a higher, more stable benchmark for determining the copyright liability of passive intermediaries, based on the degree of actual, direct control that the intermediary can exercise over the infringing actions of its users. This approach would provide greater clarity and consistency than has existed to date in this area of copyright law in Australia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to describe an innovative compliance control architecture for hybrid multi‐legged robots. The approach was verified on the hybrid legged‐wheeled robot ASGUARD, which was inspired by quadruped animals. The adaptive compliance controller allows the system to cope with a variety of stairs, very rough terrain, and is also able to move with high velocity on flat ground without changing the control parameters. Design/methodology/approach – The paper shows how this adaptivity results in a versatile controller for hybrid legged‐wheeled robots. For the locomotion control we use an adaptive model of motion pattern generators. The control approach takes into account the proprioceptive information of the torques, which are applied on the legs. The controller itself is embedded on a FPGA‐based, custom designed motor control board. An additional proprioceptive inclination feedback is used to make the same controller more robust in terms of stair‐climbing capabilities. Findings – The robot is well suited for disaster mitigation as well as for urban search and rescue missions, where it is often necessary to place sensors or cameras into dangerous or inaccessible areas to get a better situation awareness for the rescue personnel, before they enter a possibly dangerous area. A rugged, waterproof and dust‐proof corpus and the ability to swim are additional features of the robot. Originality/value – Contrary to existing approaches, a pre‐defined walking pattern for stair‐climbing was not used, but an adaptive approach based only on internal sensor information. In contrast to many other walking pattern based robots, the direct proprioceptive feedback was used in order to modify the internal control loop, thus adapting the compliance of each leg on‐line.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cold-formed steel members have many advantages over hot-rolled steel members. However, they are susceptible to various buckling modes at stresses below the yield stress of the member because of their relatively high width-to-thickness ratio. Web crippling is a form of localized failure mode that can occur when the members are subjected to transverse high concentrated loadings and/or reactions. The four common loading conditions are the end-one-flange (EOF), interior-one-flange (IOF), end-two-flange (ETF) and interior-two-flange (ITF) loadings. Recently a test method has been proposed by AISI to obtain the web crippling capacities under these four loading conditions. Using this test method 42 tests were conducted in this research to investigate the web crippling behaviour and strengths of unlipped channels with stocky webs under ETF and ITF cases. DuraGal sections having a nominal yield stress of 450 MPa were tested with different web slenderness and bearing lengths. The flanges of these channel sections were not fastened to the supports. In this research the suitability of the currently available design rules for unlipped channels subject to web crippling was investigated, and suitable modifications were proposed where necessary. In addition to this, a new design rule was proposed based on the direct strength method to predict the web crippling capacities of tested beams. This paper presents the details of this experimental study and the results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cold-formed steel members have been widely used in residential and commercial buildings as primary load bearing structural elements. They are often made of thin steel sheets and hence they are more susceptible to local buckling. The buckling behaviour of cold-formed steel compression members under fire conditions is not fully investigated yet and hence there is a lack of knowledge on the fire performance of cold-formed steel compression members. Current cold-formed steel design standards do not provide adequate design guidelines for the fire design of cold-formed steel compression members. Therefore a research project based on extensive experimental and numerical studies was undertaken to investigate the local buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. First a series of 91 local buckling tests was conducted at ambient and uniform elevated temperatures up to 700oC on cold-formed lipped and unlipped channels. Suitable finite element models were then developed to simulate the behaviour of tested columns and were validated using test results. All the ultimate load capacity results for local buckling were compared with the predictions from the available design rules based on AS/NZS 4600, BS 5950 Part 5, Eurocode 3 Parts 1.2 and 1.3 and the direct strength method (DSM), based on which suitable recommendations have been made for the fire design of cold-formed steel compression members subject to local buckling at uniform elevated temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integration of small-scale electricity generators, known as distributed generation (DG), into the distribution networks has become increasingly popular at the present. This tendency together with the falling price of the synchronous-type generator has potential to give DG a better chance at participating in the voltage regulation process together with other devices already available in the system. The voltage control issue turns out to be a very challenging problem for the distribution engineers since existing control coordination schemes would need to be reconsidered to take into account the DG operation. In this paper, we propose a control coordination technique, which is able to utilize the ability of DG as a voltage regulator and, at the same time, minimize interaction with other active devices, such as an on-load tap changing transformer and a voltage regulator. The technique has been developed based on the concept of control zone, line drop compensation, dead band, as well as the choice of controllers' parameters. Simulations carried out on an Australian system show that the technique is suitable and flexible for any system with multiple regulating devices including DG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the objectives of this study was to evaluate soil testing equipment based on its capability of measuring in-place stiffness or modulus values. As design criteria transition from empirical to mechanistic-empirical, soil test methods and equipment that measure properties such as stiffness and modulus and how they relate to Florida materials are needed. Requirements for the selected equipment are that they be portable, cost effective, reliable, a ccurate, and repeatable. A second objective is that the selected equipment measures soil properties without the use of nuclear materials.The current device used to measure soil compaction is the nuclear density gauge (NDG). Equipment evaluated in this research included lightweight deflectometers (LWD) from different manufacturers, a dynamic cone penetrometer (DCP), a GeoGauge, a Clegg impact soil tester (CIST), a Briaud compaction device (BCD), and a seismic pavement analyzer (SPA). Evaluations were conducted over ranges of measured densities and moistures.Testing (Phases I and II) was conducted in a test box and test pits. Phase III testing was conducted on materials found on five construction projects located in the Jacksonville, Florida, area. Phase I analyses determined that the GeoGauge had the lowest overall coefficient of variance (COV). In ascending order of COV were the accelerometer-type LWD, the geophone-type LWD, the DCP, the BCD, and the SPA which had the highest overall COV. As a result, the BCD and the SPA were excluded from Phase II testing.In Phase II, measurements obtained from the selected equipment were compared to the modulus values obtained by the static plate load test (PLT), the resilient modulus (MR) from laboratory testing, and the NDG measurements. To minimize soil and moisture content variability, the single spot testing sequence was developed. At each location, test results obtained from the portable equipment under evaluation were compared to the values from adjacent NDG, PLT, and laboratory MR measurements. Correlations were developed through statistical analysis. Target values were developed for various soils for verification on similar soils that were field tested in Phase III. The single spot testing sequence also was employed in Phase III, field testing performed on A-3 and A-2-4 embankments, limerock-stabilized subgrade, limerock base, and graded aggregate base found on Florida Department of Transportation construction projects. The Phase II and Phase III results provided potential trend information for future research—specifically, data collection for in-depth statistical analysis for correlations with the laboratory MR for specific soil types under specific moisture conditions. With the collection of enough data, stronger relationships could be expected between measurements from the portable equipment and the MR values. Based on the statistical analyses and the experience gained from extensive use of the equipment, the combination of the DCP and the LWD was selected for in-place soil testing for compaction control acceptance. Test methods and developmental specifications were written for the DCP and the LWD. The developmental specifications include target values for the compaction control of embankment, subgrade, and base materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mining industry presents us with a number of ideal applications for sensor based machine control because of the unstructured environment that exists within each mine. The aim of the research presented here is to increase the productivity of existing large compliant mining machines by retrofitting with enhanced sensing and control technology. The current research focusses on the automatic control of the swing motion cycle of a dragline and an automated roof bolting system. We have achieved: * closed-loop swing control of an one-tenth scale model dragline; * single degree of freedom closed-loop visual control of an electro-hydraulic manipulator in the lab developed from standard components.