989 resultados para diffusion approximation
Resumo:
In this work, we theoretically examine recent pump/probe photoemission experiments on the strongly correlated charge-density-wave insulator TaS2.We describe the general nonequilibrium many-body formulation of time-resolved photoemission in the sudden approximation, and then solve the problem using dynamical mean-field theory with the numerical renormalization group and a bare density of states calculated from density functional theory including the charge-density-wave distortion of the ion cores and spin-orbit coupling. We find a number of interesting results: (i) the bare band structure actually has more dispersion in the perpendicular direction than in the two-dimensional planes; (ii) the DMFT approach can produce upper and lower Hubbard bands that resemble those in the experiment, but the upper bands will overlap in energy with other higher energy bands; (iii) the effect of the finite width of the probe pulse is minimal on the shape of the photoemission spectra; and (iv) the quasiequilibrium approximation does not fully describe the behavior in this system.
Resumo:
An analysis has been carried out to study the non-Darcy natural convention flow of Newtonian fluids on a vertical cone embedded in a saturated porous medium with power-law variation of the wall temperature/concentration or heat/mass flux and suction/injection with the streamwise distance x. Both non-similar and self-similar solutions have been obtained. The effects of non-Darcy parameter, ratio of the buoyancy forces due to mass and heat diffusion, variation of wall temperature/concentration or heat/mass flux and suction/injection on the Nusselt and Sherwood numbers have been studied.
Resumo:
The aim of this study was to compare the use of indirect haemagglutination (IHA) and gel diffusion (GD) tests for serotyping Haemophilus parasuis by the Kielstein-Rapp-Gabrielson scheme. All 15 serovar reference strains, 72 Australian field isolates, nine Chinese field isolates, and seven isolates from seven experimentally infected pigs were evaluated with both tests. With the IHA test, 14 of the 15 reference strains were correctly serotyped – with serovar 10 failing to give a titre with serovar 10 antiserum. In the GD test, 13 reference strains were correctly serotyped – with antigen from serovars 7 and 8 failing to react with any antiserum. The IHA methodology serotyped a total of 45 of 81 field isolates while the GD methodology serotyped a total of 48 isolates. For 29 isolates, the GD and IHA methods gave discordant results. It was concluded that the IHA is a good additional test for the serotyping of H. parasuis by the KRG scheme if the GD methodology fails to provide a result or shows unusual cross-reactions.
Resumo:
The diffusion coefficient, D, and the ionic mobility, μ, in the protonic conductor ammonium ferrocyanide hydrate have been determined by the isothermal transient ionic current method. D is also determined from the time dependence of the build up of potential across the samples and theretical expressions describing this build up in terms of double exponential dependence on time are obtained. The values obtained are D=3.875×10−11m2s−1 and μ=1.65×10−9 m2V−1s−1.
Resumo:
The variation of the interdiffusion coefficient with the change in composition in the Nb-Mo system is determined in the temperature range of 1800 °C to 1900 °C. It was found that the activation energy has a minimum at around 45 at. pct Nb. The values of the pre-exponential factor and the activation energy for diffusion are compared with the data available in the literature. Further, the impurity diffusion coefficients of Nb in Mo and Mo in Nb are calculated.
Resumo:
An exact solution to the unsteady convective diffusion equation for the dispersion of a solute in a fully developed laminar flow in an annular pipe is obtained. Generalized dispersion model which is valid for all time after the injection of solute in the flow is used to evaluate the dispersion coefficients as functions of time. It is observed that the axial dispersion decreases with an increase in the radius of the inner cylinder.
Resumo:
Theoretical approaches are of fundamental importance to predict the potential impact of waste disposal facilities on ground water contamination. Appropriate design parameters are generally estimated be fitting theoretical models to data gathered from field monitoring or laboratory experiments. Transient through-diffusion tests are generally conducted in the laboratory to estimate the mass transport parameters of the proposed barrier material. Thes parameters are usually estimated either by approximate eye-fitting calibration or by combining the solution of the direct problem with any available gradient-based techniques. In this work, an automated, gradient-free solver is developed to estimate the mass transport parameters of a transient through-diffusion model. The proposed inverse model uses a particle swarm optimization (PSO) algorithm that is based on the social behavior of animals searching for food sources. The finite difference numerical solution of the forward model is integrated with the PSO algorithm to solve the inverse problem of parameter estimation. The working principle of the new solver is demonstrated and mass transport parameters are estimated from laboratory through-diffusion experimental data. An inverse model based on the standard gradient-based technique is formulated to compare with the proposed solver. A detailed comparative study is carried out between conventional methods and the proposed solver. The present automated technique is found to be very efficient and robust. The mass transport parameters are obtained with great precision.
Resumo:
Unlike standard applications of transport theory, the transport of molecules and cells during embryonic development often takes place within growing multidimensional tissues. In this work, we consider a model of diffusion on uniformly growing lines, disks, and spheres. An exact solution of the partial differential equation governing the diffusion of a population of individuals on the growing domain is derived. Using this solution, we study the survival probability, S(t). For the standard nongrowing case with an absorbing boundary, we observe that S(t) decays to zero in the long time limit. In contrast, when the domain grows linearly or exponentially with time, we show that S(t) decays to a constant, positive value, indicating that a proportion of the diffusing substance remains on the growing domain indefinitely. Comparing S(t) for diffusion on lines, disks, and spheres indicates that there are minimal differences in S(t) in the limit of zero growth and minimal differences in S(t) in the limit of fast growth. In contrast, for intermediate growth rates, we observe modest differences in S(t) between different geometries. These differences can be quantified by evaluating the exact expressions derived and presented here.
Resumo:
We consider the motion of a diffusive population on a growing domain, 0 < x < L(t ), which is motivated by various applications in developmental biology. Individuals in the diffusing population, which could represent molecules or cells in a developmental scenario, undergo two different kinds of motion: (i) undirected movement, characterized by a diffusion coefficient, D, and (ii) directed movement, associated with the underlying domain growth. For a general class of problems with a reflecting boundary at x = 0, and an absorbing boundary at x = L(t ), we provide an exact solution to the partial differential equation describing the evolution of the population density function, C(x,t ). Using this solution, we derive an exact expression for the survival probability, S(t ), and an accurate approximation for the long-time limit, S = limt→∞ S(t ). Unlike traditional analyses on a nongrowing domain, where S ≡ 0, we show that domain growth leads to a very different situation where S can be positive. The theoretical tools developed and validated in this study allow us to distinguish between situations where the diffusive population reaches the moving boundary at x = L(t ) from other situations where the diffusive population never reaches the moving boundary at x = L(t ). Making this distinction is relevant to certain applications in developmental biology, such as the development of the enteric nervous system (ENS). All theoretical predictions are verified by implementing a discrete stochastic model.
Resumo:
Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction—diffusion process on 0
Resumo:
A numerical analysis of the gas dynamic structure of a two-dimensional laminar boundary layer diffusion flame over a porous flat plate in a confined flow is made on the basis of the familiar boundary layer and flame sheet approximations neglecting buoyancy effects. The governing equations of aerothermochemistry with the appropriate boundary conditions are solved using the Patankar-Spalding method. The analysis predicts the flame shape, profiles of temperature, concentrations of variousspecies, and the density of the mixture across the boundary layer. In addition, it also predicts the pressure gradient in the flow direction arising from the confinement ofthe flow and the consequent velocity overshoot near the flame surface. The results of thecomputation performed for an n-pentane-air system are compared with experimental data andthe agreement is found to be satisfactory.
Resumo:
The maximum independent set problem is NP-complete even when restricted to planar graphs, cubic planar graphs or triangle free graphs. The problem of finding an absolute approximation still remains NP-complete. Various polynomial time approximation algorithms, that guarantee a fixed worst case ratio between the independent set size obtained to the maximum independent set size, in planar graphs have been proposed. We present in this paper a simple and efficient, O(|V|) algorithm that guarantees a ratio 1/2, for planar triangle free graphs. The algorithm differs completely from other approaches, in that, it collects groups of independent vertices at a time. Certain bounds we obtain in this paper relate to some interesting questions in the theory of extremal graphs.
Resumo:
The limits of stability and extinction of a laminar diffusion flame have been experimentally studied in a two-dimensional laminar boundary layer over a porous flat plate through which n-pentane vapour was uniformly injected. The stability and extinction boundaries are mapped on a plot of free stream oxidant velocity versus fuel injection velocity. Effects of free stream temperature and of dilution of fuel and oxidant on these boundaries have been examined. The results show that there exists a limiting oxidant flux beyond which the diffusion flame cannot be sustained. This limiting oxidant flux has been found to depend_on the free stream oxygen concentration, fuel concentration and injection'velocity of the fuel.