902 resultados para computer science and engineering
Resumo:
Reusable and evolvable Software Engineering Environments (SEES) are essential to software production and have increasingly become a need. In another perspective, software architectures and reference architectures have played a significant role in determining the success of software systems. In this paper we present a reference architecture for SEEs, named RefASSET, which is based on concepts coming from the aspect-oriented approach. This architecture is specialized to the software testing domain and the development of tools for that domain is discussed. This and other case studies have pointed out that the use of aspects in RefASSET provides a better Separation of Concerns, resulting in reusable and evolvable SEEs. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In recent years, it has been observed that software clones and plagiarism are becoming an increased threat for one?s creativity. Clones are the results of copying and using other?s work. According to the Merriam – Webster dictionary, “A clone is one that appears to be a copy of an original form”. It is synonym to duplicate. Clones lead to redundancy of codes, but not all redundant code is a clone.On basis of this background knowledge ,in order to safeguard one?s idea and to avoid intentional code duplication for pretending other?s work as if their owns, software clone detection should be emphasized more. The objective of this paper is to review the methods for clone detection and to apply those methods for finding the extent of plagiarism occurrence among the Swedish Universities in Master level computer science department and to analyze the results.The rest part of the paper, discuss about software plagiarism detection which employs data analysis technique and then statistical analysis of the results.Plagiarism is an act of stealing and passing off the idea?s and words of another person?s as one?s own. Using data analysis technique, samples(Master level computer Science thesis report) were taken from various Swedish universities and processed in Ephorus anti plagiarism software detection. Ephorus gives the percentage of plagiarism for each thesis document, from this results statistical analysis were carried out using Minitab Software.The results gives a very low percentage of Plagiarism extent among the Swedish universities, which concludes that Plagiarism is not a threat to Sweden?s standard of education in computer science.This paper is based on data analysis, intelligence techniques, EPHORUS software plagiarism detection tool and MINITAB statistical software analysis.
Resumo:
This paper describes an innovative approach to develop the understanding about the relevance of mathematics to computer science. The mathematical subjects are introduced through an application-to-model scheme that lead computer science students to a better understanding of why they have to learn math and learn it effectively. Our approach consists of a single one semester course, taught at the first semester of the program, where the students are initially exposed to some typical computer applications. When they recognize the applications' complexity, the instructor gives the mathematical models supporting such applications, even before a formal introduction to the model in a math course. We applied this approach at Unesp (Brazil) and the results include a large reduction in the rate of students that abandon the college and better students in the final years of our program.
Resumo:
Includes bibliography
Resumo:
The importance of science and technology (S&T) in Small Island Developing States (SIDS) is clearly articulated in Chapter XI, paragraphs 57, 58, 61 and 62 of the Mauritius Strategy for the Further Implementation of the Programme of Action for Sustainable Development of Small Island Developing States (MSI). At the regional level, the Heads of Government of the Caribbean Community (CARICOM) noted the challenge that CARICOM member States face in competing in this new international economic environment in which the impact of scientific and technological change has created a knowledge-based global economy. Given the importance of S&T to development of Caribbean SIDS, the Economic Commission for Latin America and the Caribbean (ECLAC) Subregional Headquarters for the Caribbean embarked on a study to determine the causes and consequences of low rates of specialisation in S&T with a view to making recommendations for development of strategies for addressing these challenges. Data on postgraduate (Master of Science, Master of Philosophy and Doctor of Philosophy) enrolment and graduation in agriculture, engineering and the sciences from the three campuses of the University of the West Indies (UWI) as well as from the University of Technology in Jamaica and the University of Trinidad and Tobago (UTT) were examined and analysed. Face-to-face interviews were also held with key personnel from these institutions and a questionnaire was also served to individuals in key institutions. Results of the study revealed that although the number of students enrolled in higher degree programmes has increased in absolute terms, they are decreasing in relative terms. However, enrolment in agriculture has indeed declined while enrolment rates in engineering, although increasing, were not significantly high. Market forces have proved to be a main reason for this trend while facilities for the conduct and supervision of cutting-edge research, the disconnect between science and industry and societal labelling of scientists as “misfits” are also contributing to the situation. This has resulted in a reduced desire by students at all levels of the school system and faculty to be involved in S&T; lack of innovation; a better staffed private, as compared with public, sector; and poor remuneration in science-based employment. There also appears to be a gender bias in enrolment with more males than females being enrolled in engineering while the opposite is apparent in agriculture and the sciences. Recommendations for remedying this situation range from increasing investment in S&T, creating linkages between science and industry as well as with the international community, raising awareness of the value of S&T at all levels of the education system to informing policy to stimulate the science – innovation interface so as to promote intellectual property rights.
Resumo:
The irregular shape packing problem is approached. The container has a fixed width and an open dimension to be minimized. The proposed algorithm constructively creates the solution using an ordered list of items and a placement heuristic. Simulated annealing is the adopted metaheuristic to solve the optimization problem. A two-level algorithm is used to minimize the open dimension of the container. To ensure feasible layouts, the concept of collision free region is used. A collision free region represents all possible translations for an item to be placed and may be degenerated. For a moving item, the proposed placement heuristic detects the presence of exact fits (when the item is fully constrained by its surroundings) and exact slides (when the item position is constrained in all but one direction). The relevance of these positions is analyzed and a new placement heuristic is proposed. Computational comparisons on benchmark problems show that the proposed algorithm generated highly competitive solutions. Moreover, our algorithm updated some best known results. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this work we introduce a relaxed version of the constant positive linear dependence constraint qualification (CPLD) that we call RCPLD. This development is inspired by a recent generalization of the constant rank constraint qualification by Minchenko and Stakhovski that was called RCRCQ. We show that RCPLD is enough to ensure the convergence of an augmented Lagrangian algorithm and that it asserts the validity of an error bound. We also provide proofs and counter-examples that show the relations of RCRCQ and RCPLD with other known constraint qualifications. In particular, RCPLD is strictly weaker than CPLD and RCRCQ, while still stronger than Abadie's constraint qualification. We also verify that the second order necessary optimality condition holds under RCRCQ.
Resumo:
The web services (WS) technology provides a comprehensive solution for representing, discovering, and invoking services in a wide variety of environments, including Service Oriented Architectures (SOA) and grid computing systems. At the core of WS technology lie a number of XML-based standards, such as the Simple Object Access Protocol (SOAP), that have successfully ensured WS extensibility, transparency, and interoperability. Nonetheless, there is an increasing demand to enhance WS performance, which is severely impaired by XML's verbosity. SOAP communications produce considerable network traffic, making them unfit for distributed, loosely coupled, and heterogeneous computing environments such as the open Internet. Also, they introduce higher latency and processing delays than other technologies, like Java RMI and CORBA. WS research has recently focused on SOAP performance enhancement. Many approaches build on the observation that SOAP message exchange usually involves highly similar messages (those created by the same implementation usually have the same structure, and those sent from a server to multiple clients tend to show similarities in structure and content). Similarity evaluation and differential encoding have thus emerged as SOAP performance enhancement techniques. The main idea is to identify the common parts of SOAP messages, to be processed only once, avoiding a large amount of overhead. Other approaches investigate nontraditional processor architectures, including micro-and macrolevel parallel processing solutions, so as to further increase the processing rates of SOAP/XML software toolkits. This survey paper provides a concise, yet comprehensive review of the research efforts aimed at SOAP performance enhancement. A unified view of the problem is provided, covering almost every phase of SOAP processing, ranging over message parsing, serialization, deserialization, compression, multicasting, security evaluation, and data/instruction-level processing.
Resumo:
Let G be a graph on n vertices with maximum degree ?. We use the Lovasz local lemma to show the following two results about colourings ? of the edges of the complete graph Kn. If for each vertex v of Kn the colouring ? assigns each colour to at most (n - 2)/(22.4?2) edges emanating from v, then there is a copy of G in Kn which is properly edge-coloured by ?. This improves on a result of Alon, Jiang, Miller, and Pritikin [Random Struct. Algorithms 23(4), 409433, 2003]. On the other hand, if ? assigns each colour to at most n/(51?2) edges of Kn, then there is a copy of G in Kn such that each edge of G receives a different colour from ?. This proves a conjecture of Frieze and Krivelevich [Electron. J. Comb. 15(1), R59, 2008]. Our proofs rely on a framework developed by Lu and Szekely [Electron. J. Comb. 14(1), R63, 2007] for applying the local lemma to random injections. In order to improve the constants in our results we use a version of the local lemma due to Bissacot, Fernandez, Procacci, and Scoppola [preprint, arXiv:0910.1824]. (c) 2011 Wiley Periodicals, Inc. Random Struct. Alg., 40, 425436, 2012
Resumo:
Creating high-quality quad meshes from triangulated surfaces is a highly nontrivial task that necessitates consideration of various application specific metrics of quality. In our work, we follow the premise that automatic reconstruction techniques may not generate outputs meeting all the subjective quality expectations of the user. Instead, we put the user at the center of the process by providing a flexible, interactive approach to quadrangulation design. By combining scalar field topology and combinatorial connectivity techniques, we present a new framework, following a coarse to fine design philosophy, which allows for explicit control of the subjective quality criteria on the output quad mesh, at interactive rates. Our quadrangulation framework uses the new notion of Reeb atlas editing, to define with a small amount of interactions a coarse quadrangulation of the model, capturing the main features of the shape, with user prescribed extraordinary vertices and alignment. Fine grain tuning is easily achieved with the notion of connectivity texturing, which allows for additional extraordinary vertices specification and explicit feature alignment, to capture the high-frequency geometries. Experiments demonstrate the interactivity and flexibility of our approach, as well as its ability to generate quad meshes of arbitrary resolution with high-quality statistics, while meeting the user's own subjective requirements.
Resumo:
The Distributed Software Development (DSD) is a development strategy that meets the globalization needs concerned with the increase productivity and cost reduction. However, the temporal distance, geographical dispersion and the socio-cultural differences, increased some challenges and, especially, added new requirements related with the communication, coordination and control of projects. Among these new demands there is the necessity of a software process that provides adequate support to the distributed software development. This paper presents an integrated approach of software development and test that considers distributed teams peculiarities. The approach purpose is to offer support to DSD, providing a better project visibility, improving the communication between the development and test teams, minimizing the ambiguity and difficulty to understand the artifacts and activities. This integrated approach was conceived based on four pillars: (i) to identify the DSD peculiarities concerned with development and test processes, (ii) to define the necessary elements to compose the integrated approach of development and test to support the distributed teams, (iii) to describe and specify the workflows, artifacts, and roles of the approach, and (iv) to represent appropriately the approach to enable the effective communication and understanding of it.
Resumo:
A deep theoretical analysis of the graph cut image segmentation framework presented in this paper simultaneously translates into important contributions in several directions. The most important practical contribution of this work is a full theoretical description, and implementation, of a novel powerful segmentation algorithm, GC(max). The output of GC(max) coincides with a version of a segmentation algorithm known as Iterative Relative Fuzzy Connectedness, IRFC. However, GC(max) is considerably faster than the classic IRFC algorithm, which we prove theoretically and show experimentally. Specifically, we prove that, in the worst case scenario, the GC(max) algorithm runs in linear time with respect to the variable M=|C|+|Z|, where |C| is the image scene size and |Z| is the size of the allowable range, Z, of the associated weight/affinity function. For most implementations, Z is identical to the set of allowable image intensity values, and its size can be treated as small with respect to |C|, meaning that O(M)=O(|C|). In such a situation, GC(max) runs in linear time with respect to the image size |C|. We show that the output of GC(max) constitutes a solution of a graph cut energy minimization problem, in which the energy is defined as the a"" (a) norm ayenF (P) ayen(a) of the map F (P) that associates, with every element e from the boundary of an object P, its weight w(e). This formulation brings IRFC algorithms to the realm of the graph cut energy minimizers, with energy functions ayenF (P) ayen (q) for qa[1,a]. Of these, the best known minimization problem is for the energy ayenF (P) ayen(1), which is solved by the classic min-cut/max-flow algorithm, referred to often as the Graph Cut algorithm. We notice that a minimization problem for ayenF (P) ayen (q) , qa[1,a), is identical to that for ayenF (P) ayen(1), when the original weight function w is replaced by w (q) . Thus, any algorithm GC(sum) solving the ayenF (P) ayen(1) minimization problem, solves also one for ayenF (P) ayen (q) with qa[1,a), so just two algorithms, GC(sum) and GC(max), are enough to solve all ayenF (P) ayen (q) -minimization problems. We also show that, for any fixed weight assignment, the solutions of the ayenF (P) ayen (q) -minimization problems converge to a solution of the ayenF (P) ayen(a)-minimization problem (ayenF (P) ayen(a)=lim (q -> a)ayenF (P) ayen (q) is not enough to deduce that). An experimental comparison of the performance of GC(max) and GC(sum) algorithms is included. This concentrates on comparing the actual (as opposed to provable worst scenario) algorithms' running time, as well as the influence of the choice of the seeds on the output.
Resumo:
XML similarity evaluation has become a central issue in the database and information communities, its applications ranging over document clustering, version control, data integration and ranked retrieval. Various algorithms for comparing hierarchically structured data, XML documents in particular, have been proposed in the literature. Most of them make use of techniques for finding the edit distance between tree structures, XML documents being commonly modeled as Ordered Labeled Trees. Yet, a thorough investigation of current approaches led us to identify several similarity aspects, i.e., sub-tree related structural and semantic similarities, which are not sufficiently addressed while comparing XML documents. In this paper, we provide an integrated and fine-grained comparison framework to deal with both structural and semantic similarities in XML documents (detecting the occurrences and repetitions of structurally and semantically similar sub-trees), and to allow the end-user to adjust the comparison process according to her requirements. Our framework consists of four main modules for (i) discovering the structural commonalities between sub-trees, (ii) identifying sub-tree semantic resemblances, (iii) computing tree-based edit operations costs, and (iv) computing tree edit distance. Experimental results demonstrate higher comparison accuracy with respect to alternative methods, while timing experiments reflect the impact of semantic similarity on overall system performance.