979 resultados para chemical stability


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fermentation and aerobic stability were evaluated in high-moisture corn (HMC) silage inoculated with different levels of Lactobacillus buchneri. The HMC composed of 654 g/kg dry matter (DM) was ensiled in quadruplicate laboratory silos (7 L) per treatment. L. buchneri 40788 was applied at 5 × 10(4); 1 × 10(5); 5 × 10(5); and 1 × 10(6) cfu/g to the ground corn. Silages with no additive were used as controls. After 140 d of ensiling, the silages were subjected to an aerobic stability evaluation for 12 days in which the chemical parameters, microbiological parameters and silage temperature were measured to determine the aerobic deterioration. The lactic acid, acetic acid and propionic acid concentrations did not differ between silages. The fermentation parameters of HMC were not affected by L. buchneri. The HMC containing L. buchneri had a low number of yeast and mould colonies and a more stable pH until in the eighth measurement, which improved the aerobic stability without affecting gas loss. Doses of L. buchneri greater than or equal to 5 × 10(5) cfu/g applied to the HMC were the most efficient in control of aerobic deterioration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characteristics of fermentation and aerobic stability were evaluated in corn silage inoculated with different doses of Lactobacillus buchneri. The whole corn plant (300 g/kg DM) was ensiled in quadruplicate laboratory silos (7L). L. buchneri 40788 was applied at 5×10(4), 1×10(5), 5×10(5) and 1×10(6) cfu/g of fresh forage. Silages with no additive were used as controls. After 130 d of ensiling, the silages were subjected to an aerobic stability evaluation for 12 days, in which chemical and microbiological parameters as well as the temperature of the silage were measured to determine the aerobic deterioration. The addition of L. buchneri resulted in increased acetic acid concentrations. The number of yeast colonies was low in all treated silages. The pH, lactic and propionic acid concentrations did not differ between silages. Under aerobic conditions, all the treated silages showed a low number of yeasts and a great aerobic stability. Therefore, L. buchneri is effective against yeasts and improves the aerobic stability of corn silage in laboratory silos. However, doses equal or superior to 1×10(5) cfu/g of fresh forage were more efficient in the control of aerobic spoilage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cellulose was extracted from lignocellulosic fibers and nanocrystalline cellulose (NC) prepared by alkali treatment of the fiber, steam explosion of the mercerized fiber, bleaching of the steam exploded fiber and finally acid treatment by 5% oxalic acid followed again by steam explosion. The average length and diameter of the NC were between 200-250 nm and 4-5 nm, respectively, in a monodisperse distribution. Different concentrations of the NC (0.1, 0.5, 1.0, 1.5, 2.0 and 2.5% by weight) were dispersed non-covalently into a completely bio-based thermoplastic polyurethane (TPU) derived entirely from oleic acid. The physical properties of the TPU nanocomposites were assessed by Fourier Transform Infra-Red spectroscopy (FTIR), Thermo-Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), Dynamic Mechanical Analysis (DMA) and Mechanical Properties Analysis. The nanocomposites demonstrated enhanced stress and elongation at break and improved thermal stability compared to the neat TPU. The best results were obtained with 0.5% of NC in the TPU. The elongation at break of this sample was improved from 178% to 269% and its stress at break from 29.3 to 40.5 MPa. In this and all other samples the glass transition temperature, melting temperature and crystallization behavior were essentially unaffected. This finding suggests a potential method of increasing the strength and the elongation at break of typically brittle and weak lipid-based TPUs without alteration of the other physico-chemical properties of the polymer. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The guava seed protein isolate ( PI) was obtained from the protein precipitation belonging to the class of the gluteline (Ip 4.5). The conditions for the preparation of the PI were determined by both the solubility curve and simultaneous thermogravimetry-differential thermal analysis (TG-DTA): pH 11.5, absence of NaCl and whiteners and T=( 25 +/- 3) degrees C. Under these conditions a yield of 77.0 +/- 0.4%, protein content of 94.2 +/- 0.3, ashes 0.50 +/- 0.05% and thermal stability, T= 200 degrees C, were obtained. The TG-DTA curves and the PI emulsification capacity study showed the presence of hydrophobic microdomains at pH 11.5 and 3.0 suggesting a random coil protein conformation and, to pH 10.0, an open protein conformation. The capacity of emulsification (CE), in the absence of NaCl, was verified for: 1 - pH 3.0 and 8.5, using the IP extracted at pH 10.0 and 11.5, CE >= 343 +/- 5 g of emulsified oil/g of protein; 2 - pH 6.60 just for the PI obtained at pH 11.5, CE >= 140 +/- 8 g of emulsified oil/g of protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geometric, thermodynamic and electronic properties of cluster neutrals NbxOy and cations NbxOy+ (x = 1-3; y = 2-5, 7, 8) have been characterized theoretically. A DFT calculation using a hybrid combination of B3LYP with contracted Huzinaga basis sets. Numerical results of the relative stabilities, ionization potentials and band gaps of different clusters are in agreement with experiment. Analysis of dissociation channels supports the more stable building blocks as formed by NbO2, NbO2+ NbO3 and NbO3+ stoichiometries. The net atomic charges suggest that oxygen donor molecules can interact more favorably on central niobium atoms of cluster cations, while the interaction with oxygen acceptor molecules is more favorable on the terminal oxygen atoms of neutral clusters. A topological analysis of the electron localization function gradient field indicates that the clusters may be described as having a strong ionic interaction between Nb and O atoms. Published by Elsevier B.V. B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Steam reforming is the most usual method of hydrogen production due to its high production efficiency and technological maturity the use of ethanol for this purpose is an interesting option because it is a renewable and environmentally friendly fuel. The objective of this article is to present the physical-chemical, thermodynamic, and exergetic analysis of a steam reformer of ethanol, in order to produce 0.7 Nm(3)/h of hydrogen as feedstock of a 1 kW PEMFC the global reaction of ethanol is considered. Superheated ethanol reacts with steam at high temperatures producing hydrogen and carbon dioxide, depending strongly on the thermodynamic conditions of reforming, as well as on the technical features of the reformer system and catalysts. The thermodynamic analysis shows the feasibility of this reaction in temperatures about 206 degrees C. Below this temperature, the reaction trends to the reactants. The advance degree increases with temperature and decreases with pressure. Optimal temperatures range between 600 and 700 degrees C. However, when the temperature attains 700 degrees C, the reaction stability occurs, that is, the hydrogen production attains the limit. For temperatures above 700 degrees C, the heat use is very high, involving high costs of production due to the higher volume of fuel or electricity used. The optimal pressure is 1 atm., e.g., at atmospheric pressure. The exergetic analysis shows that the lower irreversibility is attained for lower pressures. However the temperature changes do not affect significantly the irreversibilities. This analysis shows that the best thermodynamic conditions for steam reforming of ethanol are the same conditions suggested in the physical-chemical analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The construction of a large reservoir on the Parana River (Selviria, MS, Brazil) disturbed the soil of an extensive agricultural area in which between 5 and 8m of topsoil were removed. In this area, a restoration process was carried out using revegetation with green manure without or with amendments (for 4 years), crops (2 years), and Brachiaria decumbens cultivation for 6 years. The following treatments were used: control plots, T0 (residual subsoil) and T1 (soil tillage without culture); plots with green manure and without amendments: T2 (velvet bean) and T3 (pigeon pea); plots with green manure and with amendments: T4 (limed + velvet bean), T5 (limed + pigeon pea); T6 (limed + gypsum + velvet bean) and T7 (limed + gypsum + pigeon-pea). They were arranged in randomized blocks. After 13 years of rehabilitation process, when the soil was cultivated with brachiaria, the structural stability in three depths was evaluated. Organic-matter content and others chemical properties did not show any relationship with the stability of aggregates of the experimental area as measured by mean weight diameter (MWD). Significant differences between depths were found for MWD and the other parameters measured. Nevertheless, there were no significant differences observed between treatments, independent of the adopted system of revegetation. By taking an absolute value of MWD, the stability of superficial layer was observed in the following sequence: T7 T5 T6 T1 T2 T3 T4 T0. The control plot (T0) gave the lowest value of MWD (1.76mm) in relation to the plots in restoration process. Treatment T7 was the most effective in recovering the stability of aggregates (2.63mm). However, treatments T5 and T6 displayed a similar value. After 13 years of revegetation practices, a slight recovery of the stability was observed, although this is still lower than stability in soils of similar edaphic conditions in the original topsoil of experimental area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the color stability of a maxillofacial elastomer with the addition of a nanoparticle pigment and/or an opacifier submitted to chemical disinfection and artificial aging. Specimens were divided into four groups (n = 30): group I: silicone without pigment or opacifier, group II: ceramic powder pigment, group III: Barium sulfate (BaSO(4)) opacifier, and group IV: ceramic powder and BaSO(4) opacifier. Specimens of each group (n = 10) were disinfected with effervescent tablets, neutral soap, or 4% chlorhexidine gluconate. Disinfection was done three times a week during two months. Afterward, specimens were submitted to different periods of artificial aging. Color evaluation was initially done, after 60 days (disinfection period) and after 252, 504, and 1008 h of artificial aging with aid of a reflection spectrophotometer. Data were analyzed by three-way ANOVA and Tukey test (alpha = 0.05). The isolated factor disinfection did not statistically influence the values of color stability among groups. The association between pigment and BaSO(4) opacifier (GIV) was more stable in relationship to color change (Delta E). All values of Delta E obtained, independent of the disinfectant and the period of artificial aging, were considered acceptable in agreement with the norms presented in literature. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3625401]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Denture fractures are common in daily practice, causing inconvenience to the patient and to the dentists. Denture repairs should have adequate strength, dimensional stability and color match, and should be easily and quickly performed as well as relatively inexpensive. Objective: The aim of this study was to evaluate the flexural strength of acrylic resin repairs processed by different methods: warm water-bath, microwave energy, and chemical polymerization. Material and methods: Sixty rectangular specimens (31x10x2.5 mm) were made with warm water-bath acrylic resin (Lucitone 550) and grouped (15 specimens per group) according to the resin type used to make repair procedure: 1) specimens of warm water-bath resin (Lucitone 550) without repair (control group); 2) specimens of warm water-bath resin repaired with warm water-bath; 3) specimens of warm water-bath resin repaired with microwave resin (Acron MC); 4) specimens of warm water-bath resin repaired with autopolymerized acrylic resin (Simplex). Flexural strength was measured with the three-point bending in a universal testing machine (MTS 810 Material Test System) with load cell of 100 kgf under constant speed of 5 mm/min. Data were analyzed statistically by Kruskal-Wallis test (p<0.05). Results: The control group showed the best result (156.04 +/- 1.82 MPa). Significant differences were found among repaired specimens and the results were decreasing as follows: group 3 (43.02 +/- 2.25 MPa), group 2 (36.21 +/- 1.20 MPa) and group 4 (6.74 +/- 0.85 MPa). Conclusion: All repaired specimens demonstrated lower flexural strength than the control group. Repairs with autopolymerized acrylic resin showed the lowest flexural strength.