981 resultados para catalytic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three types of metal-containing molecular sieves with AFI, AEL and CHA structures (Me = Co, Mn, Cr and V) were synthesized hydrothermally and characterized by XRD, XRF, TG, TPR, NH3-TPD and FT-IR. It was revealed that metals were incorporated into the framework of molecular sieves and induced the presence of charge centers. Both cobalt and manganese in the framework of AIPO-5, AlPO-11 and SAPO-34 were not reducible before the structure collapse. The redox behaviours of these catalysts in cyclohexane oxidation at 403 K using O-2 as oxidant were examined. CoAPO-11 exhibited best activity and good selectivities for the monofunctional oxidation products (88.5%). Cyclohexanol was the major product over most catalysts, whereas for Cr-containing molecular sieves, high selectivity of cyclohexanone was observed. Investigation of reaction mechanism based on CoAPO-11 and CrAPO-5 catalysts indicated that the decomposition of cyclohexyl hydroperoxide (CHHP), the intermediate in cyclohexane oxidation, followed the pathway: cyclohexanone <-- CHHP --> cyclohexanol -->cyclohexanone. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been generally agreed that pyridine can be effectively mineralized in aerated TiO2 slurries using near-UV irradiation. The knowledge on the kinetics of the system possesses both practical and theoretical values. The present study, on the base of Langmuir-Hinshewood mechanism, illustrates a pseudo first-order kinetic model of the degradation with the limiting rate constant of 3.004 mg l(-1) min(-1) and equilibrium adsorption constant 2.763 x 10(-2) l mg(-1), respectively. The degradation efficiency in alkali is a little higher than that in acid with a minimum at about pH = 5, which is explained by the formation of acid-pyridine in acidic surrounding together with the amphoteric nature of the TiO2 surface. The promotion of H2O2 on the photo-degradation ties in its supplying proper amount of (OH)-O-. radicals for the inducement stage before surface redox reactions. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New chiral ferrocenyldiphosphine ligands (R)-(S)-3 and (R)-(S)-4 were prepared. The ligands were employed in Ru(II) catalyzed asymmetric transfer hydrogenation of ketones to give corresponding secondary alcohols. Up to 99% conversion with 90% e.e. was obtained on Ru(DMSO)(4)Cl-2/4 in transfer hydrogenation of acetophenones with propan-2-ol. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminum was incorporated into the mesoporous framework of ethane-silica by one-pot condensation of Al(OiPr)(3) with 1,2-bis(trimethoxysilyl)ethane using octadecyltrimethylammonium chloride as surfactant. Powder X-ray diffraction patterns, nitrogen sorption analysis, and TEM results reveal the formation of an ordered mesoporous material with uniform porosity. Al-27 MAS NMR confirms the incorporation of aluminum in the framework. The synthesized materials exhibit extremely high hydrothermal stability in boiling water (no obvious change of mesostructure and textural properties was observed even after refluxing in water for 100 h), which could be mainly contributed to the ethane-bridged mesoporous framework. The aluminum-containing mesoporous ethane-silicas are efficient catalysts for the alkylation of 2,4-di-tert-butylphenol by cinnamyl alcohol to yield a flavan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct synthesis of alcohols from CO and H2O was investigated using TiO2 catalyst. MeOH (about 24 mg g(-1) h(-1)) and EtOH (about 8 mg g(-1) h(-1)) could be produced under the reaction conditions of T= 573 K, P= 0.5 MPa, CO flow rate of 30 ml min(-1) and CO/H2O = 3/2 during the period of 12 to 44 h time-on-stream. Compared with PbO, TiO2 could preserve stable catalytic activity during a long time of reaction. For the same catalyst TiO2, the reaction performance of alkali carbonates increased with their solubility (K2CO3>Na2CO3>Li2CO3). The corresponding catalytic activity was found to increase with the alkalescence of solvent. The formation mechanism of alcohols was proposed as well. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction performance for CO hydration on a TiO2 catalyst under different calcination temperatures was investigated. Under reaction conditions of T = 573 K, P = 0.5 MPa, CO flow rate of 30 ml min(-1), TOS = 12 h, and CO/H2O (g) = 3/2 (mol), the TiO2 catalyst with a futile content of 18% shows a maximum alcohols STY of 1.81 Mg m(-2) h(-1). In addition, the catalyst deactivation and regeneration were discussed.