969 resultados para bose-einstein condensation
Resumo:
In this Letter we deal with a nonlinear Schrodinger equation with chaotic, random, and nonperiodic cubic nonlinearity. Our goal is to study the soliton evolution, with the strength of the nonlinearity perturbed in the space and time coordinates and to check its robustness under these conditions. Here we show that the chaotic perturbation is more effective in destroying the soliton behavior, when compared with random or nonperiodic perturbation. For a real system, the perturbation can be related to, e.g., impurities in crystalline structures, or coupling to a thermal reservoir which, on the average, enhances the nonlinearity. We also discuss the relevance of such random perturbations to the dynamics of Bose-Einstein condensates and their collective excitations and transport. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The problem of resonant generation of nonground-state condensates is addressed aiming at resolving the seeming paradox that arises when one resorts to the adiabatic representation. In this picture, the eigenvalues and eigenfunctions of a time-dependent Gross-Pitaevskii Hamiltonian are also functions of time. Since the level energies vary in time, no definite transition frequency can be introduced. Hence no external modulation with a fixed frequency can be made resonant. Thus, the resonant generation of adiabatic coherent modes is impossible. However, this paradox occurs only in the frame of the adiabatic picture. It is shown that no paradox exists in the properly formulated diabatic representation. The resonant generation of diabatic coherent modes is a well defined phenomenon. As an example, the equations are derived, describing the generation of diabatic coherent modes by the combined resonant modulation of the trapping potential and atomic scattering length.
Resumo:
A novel concept of quantum turbulence in finite size superfluids, such as trapped bosonic atoms, is discussed. We have used an atomic (87)Rb Bose-Einstein condensate (BEC) to study the emergence of this phenomenon. In our experiment, the transition to the quantum turbulent regime is characterized by a tangled vortex lines formation, controlled by the amplitude and time duration of the excitation produced by an external oscillating field. A simple model is suggested to account for the experimental observations. The transition from the non-turbulent to the turbulent regime is a rather gradual crossover. But it takes place in a sharp enough way, allowing for the definition of an effective critical line separating the regimes. Quantum turbulence emerging in a finite-size superfluid may be a new idea helpful for revealing important features associated to turbulence, a more general and broad phenomenon. [GRAPHICS] Amplitude versus elapsed time diagram of magnetically excited BEC superfluid, presenting the evolution from the non-turbulent regime, with well separated vortices, to the turbulent regimes, with tangled vortices (C) 2011 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA
Resumo:
We study the quantum dynamics of a two-mode Bose-Einstein condensate in a time-dependent symmetric double-well potential using analytical and numerical methods. The effects of internal degrees of freedom on the visibility of interference fringes during a stage of ballistic expansion are investigated varying particle number, nonlinear interaction sign and strength, as well as tunneling coupling. Expressions for the phase resolution are derived and the possible enhancement due to squeezing is discussed. In particular, the role of the superfluid-Mott insulator crossover and its analog for attractive interactions is recognized.
Resumo:
A posição que a renomada estatí stica de Boltzmann-Gibbs (BG) ocupa no cenário cientifíco e incontestável, tendo um âmbito de aplicabilidade muito abrangente. Por em, muitos fenômenos físicos não podem ser descritos por esse formalismo. Isso se deve, em parte, ao fato de que a estatística de BG trata de fenômenos que se encontram no equilíbrio termodinâmico. Em regiões onde o equilíbrio térmico não prevalece, outros formalismos estatísticos devem ser utilizados. Dois desses formalismos emergiram nas duas ultimas décadas e são comumente denominados de q-estatística e k-estatística; o primeiro deles foi concebido por Constantino Tsallis no final da década de 80 e o ultimo por Giorgio Kaniadakis em 2001. Esses formalismos possuem caráter generalizador e, por isso, contem a estatística de BG como caso particular para uma escolha adequada de certos parâmetros. Esses dois formalismos, em particular o de Tsallis, nos conduzem também a refletir criticamente sobre conceitos tão fortemente enraizados na estat ística de BG como a aditividade e a extensividade de certas grandezas físicas. O escopo deste trabalho esta centrado no segundo desses formalismos. A k -estatstica constitui não só uma generalização da estatística de BG, mas, atraves da fundamentação do Princípio de Interação Cinético (KIP), engloba em seu âmago as celebradas estatísticas quânticas de Fermi- Dirac e Bose-Einstein; além da própria q-estatística. Neste trabalho, apresentamos alguns aspectos conceituais da q-estatística e, principalmente, da k-estatística. Utilizaremos esses conceitos junto com o conceito de informação de bloco para apresentar um funcional entrópico espelhado no formalismo de Kaniadakis que será utilizado posteriormente para descrever aspectos informacionais contidos em fractais tipo Cantor. Em particular, estamos interessados em conhecer as relações entre parâmetros fractais, como a dimensão fractal, e o parâmetro deformador. Apesar da simplicidade, isso nos proporcionará, em trabalho futuros, descrever estatisticamente estruturas mais complexas como o DNA, super-redes e sistema complexos
Resumo:
The objective of this dissertation is the development of a general formalism to analyze the thermodynamical properties of a photon gas under the context of nonlinear electrodynamics (NLED). To this end it is obtained, through the systematic analysis of Maxwell s electromagnetism (EM) properties, the general dependence of the Lagrangian that describes this kind of theories. From this Lagrangian and in the background of classical field theory, we derive the general dispersion relation that photons must obey in terms of a background field and the NLED properties. It is important to note that, in order to achieve this result, an aproximation has been made in order to allow the separation of the total electromagnetic field into a strong background electromagnetic field and a perturbation. Once the dispersion relation is in hand, the usual Bose-Einstein statistical procedure is followed through which the thermodynamical properties, energy density and pressure relations are obtained. An important result of this work is the fact that equation of state remains identical to the one obtained under EM. Then, two examples are made where the thermodynamic properties are explicitly derived in the context of two NLED, Born-Infelds and a quadratic approximation. The choice of the first one is due to the vast appearance in literature and, the second one, because it is a first order approximation of a large class of NLED. Ultimately, both are chosen because of their simplicity. Finally, the results are compared to EM and interpreted, suggesting possible tests to verify the internal consistency of NLED and motivating further developement into the formalism s quantum case
Resumo:
Dynamics and stability of solitons in two-dimensional (2D) Bose-Einstein condensates (BEC), with one-dimensional (1D) conservative plus dissipative nonlinear optical lattices, are investigated. In the case of focusing media (with attractive atomic systems), the collapse of the wave packet is arrested by the dissipative periodic nonlinearity. The adiabatic variation of the background scattering length leads to metastable matter-wave solitons. When the atom feeding mechanism is used, a dissipative soliton can exist in focusing 2D media with 1D periodic nonlinearity. In the defocusing media (repulsive BEC case) with harmonic trap in one direction and nonlinear optical lattice in the other direction, the stable soliton can exist. Variational approach simulations are confirmed by full numerical results for the 2D Gross-Pitaevskii equation.
Resumo:
Using the numerical solution of the nonlinear Schrodinger equation and a variational method it is shown that (3 + 1)-dimensional spatiotemporal optical solitons can be stabilized by a rapidly oscillating dispersion coefficient in a Kerr medium with cubic nonlinearity. This has immediate consequence in generating dispersion-managed robust optical soliton in communication as well as possible stabilized Bose-Einstein condensates in periodic optical-lattice potential via an effective-mass formulation. We also critically compare the present stabilization with that obtained by a rapid sinusoidal oscillation of the Kerr nonlinearity parameter.
Resumo:
We present a numerical scheme for solving the time-independent nonlinear Gross-Pitaevskii equation in two dimensions describing the Bose-Einstein condensate of trapped interacting neutral atoms at zero temperature. The trap potential is taken to be of the harmonic-oscillator type and the interaction both attractive and repulsive. The Gross-Pitaevskii equation is numerically integrated consistent with the correct boundary conditions at the origin and in the asymptotic region. Rapid convergence is obtained in all cases studied. In the attractive case there is a limit Co the maximum number of atoms in the condensate. (C) 2000 Published by Elsevier B.V. B.V. All rights reserved.
Resumo:
We use a time-dependent dynamical mean-field-hydrodynamic model to study the formation of fermionic bright solitons in a trapped degenerate Fermi gas mixed with a Bose-Einstein condensate in a quasi-one-dimensional cigar-shaped geometry. Due to a strong Pauli-blocking repulsion among spin-polarized fermions at short distances there cannot be bright fermionic solitons in the case of repulsive boson-fermion interactions. However, we demonstrate that stable bright fermionic solitons can be formed for a sufficiently attractive boson-fermion interaction in a boson-fermion mixture. We also consider the formation of fermionic solitons in the presence of a periodic axial optical-lattice potential. These solitons can be formed and studied in the laboratory with present technology.
Resumo:
The effect of continuous emission hypothesis on the two-pion Bose-Einstein correlation is discussed and compared with the corresponding results based on the usual freeze-out ansatz. Sizable differences in the correlation function are observed when comparing these two scenarios of the decoupling process. They could lead to entirely different interpretation of properties of the hot matter formed in high-energy heavy-ion collisions.
Resumo:
We use a time-dependent dynamical mean-field-hydrodynamic model to study the formation of fermionic dark solitons in a trapped degenerate Fermi gas mixed with a Bose-Einstein condensate in a harmonic as well as a periodic optical-lattice potential. The dark soliton with a 'notch' in the probability density with a zero at the minimum is simulated numerically as a nonlinear continuation of the first vibrational excitation of the linear mean-field-hydrodynamic equations, as suggested recently for pure bosons. We study the free expansion of these dark solitons as well as the consequent increase in the size of their central notch and discuss the possibility of experimental observation of the notch after free expansion.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Using the complete numerical solution of a time-dependent three-dimensional rnean-field model we study the Josephson oscillation of a superfluid Fermi gas (SFG) at zero temperature formed in a combined axially-symmetric harmonic plus one-dimensional periodic optical-lattice (OL) potentials after displacing the harmonic trap along the axial OL axis. We study the dependence of Josephson frequency on the strength of the OL potential. The Josephson frequency decreases with increasing strength as found in the experiment of Cataliotti et al. [Science 293, 843 (2001)] for a Bose-Einstein condensate and of the experiment of Pezze et al. [Phys. Rev. Lett. 93, 120401 (2004)] for an ideal Fermi gas. We demonstrate a breakdown of Josephson oscillation in the SFG for a large displacement of the harmonic trap. These features of Josephson oscillation of a SFG can be tested experimentally.