970 resultados para Weakly coupled lasers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the physical mechanisms leading either to synchronization or to the formation of spatiotemporal patterns in a lattice model of pulse-coupled oscillators. In order to make the system tractable from a mathematical point of view we study a one-dimensional ring with unidirectional coupling. In such a situation, exact results concerning the stability of the fixed of the dynamic evolution of the lattice can be obtained. Furthermore, we show that this stability is the responsible for the different behaviors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give a sufficient condition for a set of block subspaces in an infinite-dimensional Banach space to be weakly Ramsey. Using this condition we prove that in the Levy-collapse of a Mahlo cardinal, every projective set is weakly Ramsey. This, together with a construction of W. H. Woodin, is used to show that the Axiom of Projective Determinacy implies that every projective set is weakly Ramsey. In the case of co we prove similar results for a stronger Ramsey property. And for hereditarily indecomposable spaces we show that the Axiom of Determinacy plus the Axiom of Dependent Choices imply that every set is weakly Ramsey. These results are the generalizations to the class of projective sets of some theorems from W. T. Gowers, and our paper "Weakly Ramsey sets in Banach spaces."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prolonged depolarization of skeletal muscle cells induces entry of extracellular calcium into muscle cells, an event referred to as excitation-coupled calcium entry. Skeletal muscle excitation-coupled calcium entry relies on the interaction between the 1,4-dihydropyridine receptor on the sarcolemma and the ryanodine receptor on the sarcoplasmic reticulum membrane. In this study, we directly measured excitation-coupled calcium entry by total internal reflection fluorescence microscopy in human skeletal muscle myotubes harbouring mutations in the RYR1 gene linked to malignant hyperthermia (MH) and central core disease (CCD). We found that excitation-coupled calcium entry is strongly enhanced in cells from patients with CCD compared with individuals with MH and controls. Furthermore, excitation-coupled calcium entry induces generation of reactive nitrogen species and enhances nuclear localization of NFATc1, which in turn may be responsible for the increased IL-6 released by myotubes from patients with CCD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxidation of solutions of glucose with methylene-blue as a catalyst in basic media can induce hydrodynamic overturning instabilities, termed chemoconvection in recognition of their similarity to convective instabilities. The phenomenon is due to gluconic acid, the marginally dense product of the reaction, which gradually builds an unstable density profile. Experiments indicate that dominant pattern wavenumbers initially increase before gradually decreasing or can even oscillate for long times. Here, we perform a weakly nonlinear analysis for an established model of the system with simple kinetics, and show that the resulting amplitude equation is analogous to that obtained in convection with insulating walls. We show that the amplitude description predicts that dominant pattern wavenumbers should decrease in the long term, but does not reproduce the aforementioned increasing wavenumber behavior in the initial stages of pattern development. We hypothesize that this is due to horizontally homogeneous steady states not being attained before pattern onset. We show that the behavior can be explained using a combination of pseudo-steady-state linear and steady-state weakly nonlinear theories. The results obtained are in qualitative agreement with the analysis of experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alpha1B-adrenergic receptor (alpha1BAR), its truncated mutant T368, different G protein-coupled receptor kinases (GRK) and arrestin proteins were transiently expressed in COS-7 or HEK293 cells alone and/or in various combinations. Coexpression of beta-adrenergic receptor kinase (betaARK) 1 (GRK2) or 2 (GRK3) could increase epinephrine-induced phosphorylation of the wild type alpha1BAR above basal as compared to that of the receptor expressed alone. On the other hand, overexpression of the dominant negative betaARK (K220R) mutant impaired agonist-induced phosphorylation of the receptor. Overexpression of GRK6 could also increase epinephrine-induced phosphorylation of the receptor, whereas GRK5 enhanced basal but not agonist-induced phosphorylation of the alpha1BAR. Increasing coexpression of betaARK1 or betaARK2 resulted in the progressive attenuation of the alpha1BAR-mediated response on polyphosphoinositide (PI) hydrolysis. However, coexpression of betaARK1 or 2 at low levels did not significantly impair the PI response mediated by the truncated alpha1BAR mutant T368, lacking the C terminus, which is involved in agonist-induced desensitization and phosphorylation of the receptor. Similar attenuation of the receptor-mediated PI response was also observed for the wild type alpha1BAR, but not for its truncated mutant, when the receptor was coexpressed with beta-arrestin 1 or beta-arrestin 2. Despite their pronounced effect on phosphorylation of the alpha1BAR, overexpression of GRK5 or GRK6 did not affect the receptor-mediated response. In conclusion, our results provide the first evidence that betaARK1 and 2 as well as arrestin proteins might be involved in agonist-induced regulation of the alpha1BAR. They also identify the alpha1BAR as a potential phosphorylation substrate of GRK5 and GRK6. However, the physiological implications of GRK5- and GRK6-mediated phosphorylation of the alpha1BAR remain to be elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Plant hormones play a pivotal role in several physiological processes during a plant's life cycle, from germination to senescence, and the determination of endogenous concentrations of hormones is essential to elucidate the role of a particular hormone in any physiological process. Availability of a sensitive and rapid method to quantify multiple classes of hormones simultaneously will greatly facilitate the investigation of signaling networks in controlling specific developmental pathways and physiological responses. Due to the presence of hormones at very low concentrations in plant tissues (10-9 M to 10-6 M) and their different chemistries, the development of a high-throughput and comprehensive method for the determination of hormones is challenging. Results The present work reports a rapid, specific and sensitive method using ultrahigh-performance liquid chromatography coupled to electrospray ionization tandem spectrometry (UPLC/ESI-MS/MS) to analyze quantitatively the major hormones found in plant tissues within six minutes, including auxins, cytokinins, gibberellins, abscisic acid, 1-amino-cyclopropane-1-carboxyic acid (the ethylene precursor), jasmonic acid and salicylic acid. Sample preparation, extraction procedures and UPLC-MS/MS conditions were optimized for the determination of all plant hormones and are summarized in a schematic extraction diagram for the analysis of small amounts of plant material without time-consuming additional steps such as purification, sample drying or re-suspension. Conclusions This new method is applicable to the analysis of dynamic changes in endogenous concentrations of hormones to study plant developmental processes or plant responses to biotic and abiotic stresses in complex tissues. An example is shown in which a hormone profiling is obtained from leaves of plants exposed to salt stress in the aromatic plant, Rosmarinus officinalis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to limited budgets and reduced inspection staff, state departments of transportation (DOTs) are in need of innovative approaches for providing more efficient quality assurance on concrete paving projects. The goal of this research was to investigate and test new methods that can determine pavement thickness in real time. Three methods were evaluated: laser scanning, ultrasonic sensors, and eddy current sensors. Laser scanning, which scans the surface of the base prior to paving and then scans the surface after paving, can determine the thickness at any point. Also, scanning lasers provide thorough data coverage that can be used to calculate thickness variance accurately and identify any areas where the thickness is below tolerance. Ultrasonic and eddy current sensors also have the potential to measure thickness nondestructively at discrete points and may result in an easier method of obtaining thickness. There appear to be two viable approaches for measuring concrete pavement thickness during the paving operation: laser scanning and eddy current sensors. Laser scanning has proved to be a reliable technique in terms of its ability to provide virtual core thickness with low variability. Research is still required to develop a prototype system that integrates point cloud data from two scanners. Eddy current sensors have also proved to be a suitable alternative, and are probably closer to field implementation than the laser scanning approach. As a next step for this research project, it is suggested that a pavement thickness measuring device using eddy current sensors be created, which would involve both a handheld and paver-mounted version of the device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unassembled immunoglobulin light chains expressed by the mouse plasmacytoma cell line NS1 (KNS1) are degraded in vivo with a half-life of 50-60 min in a way that closely resembles endoplasmic reticulum (ER)-associated degradation (Knittler et al., 1995). Here we show that the peptide aldehydes MG132 and PS1 and the specific proteasome inhibitor lactacystin effectively increased the half-life of KNS1, arguing for a proteasome-mediated degradation pathway. Subcellular fractionation and protease protection assays have indicated an ER localization of KNS1 upon proteasome inhibition. This was independently confirmed by the analysis of the folding state of KNS1and size fractionation experiments showing that the immunoglobulin light chain remained bound to the ER chaperone BiP when the activity of the proteasome was blocked. Moreover, kinetic studies performed in lactacystin-treated cells revealed a time-dependent increase in the physical stability of the BiP-KNS1complex, suggesting that additional proteins are present in the older complex. Together, our data support a model for ER-associated degradation in which both the release of a soluble nonglycosylated protein from BiP and its retrotranslocation out of the ER are tightly coupled with proteasome activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adrenoceptors are prototypic members of the superfamily of seven transmembrane domain, G protein-coupled receptors. Study of the properties of several mutationally activated adrenoceptors is deepening understanding of the normal functioning of this ubiquitous class of receptors. The new findings suggest an expansion of the classical ternary complex model of receptor action to include an explicit isomerization of the receptors from an inactive to an active state which couples to the G protein ('allosteric ternary complex model'). This isomerization involves conformational changes which may occur spontaneously, or be induced by agonists or appropriate mutations which abrogate the normal 'constraining' function of the receptor, allowing it to 'relax' into the active conformation. Robert Lefkowitz and colleagues discuss the physiological and pathophysiological implications of these new insights into regulation of receptor activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

G protein-coupled receptors (GPCRs) play critical roles in cellular processes and signaling and have been shown to form heteromers with diverge biochemical and/or pharmacological activities that are different from those of the corresponding monomers or homomers. However, despite extensive experimental results supporting the formation of GPCR heteromers in heterologous systems, the existence of such receptor heterocomplexes in the brain remains largely unknown, mostly because of the lack of appropriate methodology. Herein, we describe the in situ proximity ligation assay procedure underlining its high selectivity and sensitivity to image GPCR heteromers with confocal microscopy in brain sections. We describe here how the assay is performed and discuss advantages and disadvantages of this method compared with other available techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUME LARGE PUBLIC Le système nerveux central est principalement composé de deux types de cellules :les neurones et les cellules gliales. Ces dernières, bien que l'emportant en nombre sur les neurones, ont longtemps été considérées comme des cellules sans intérêts par les neuroscientifiques. Hors, les connaissances modernes à leurs sujets indiquent qu'elles participent à la plupart des tâches physiologiques du cerveau. Plus particulièrement, elles prennent part aux processus énergétiques cérébraux. Ceux-ci, en plus d'être vitaux, sont particulièrement intrigants puisque le cerveau représente seulement 2 % de la masse corporelle mais consomme environ 25 % du glucose (substrat énergétique) corporel. Les astrocytes, un type de cellules gliales, jouent un rôle primordial dans cette formidable utilisation de glucose par le cerveau. En effet, l'activité neuronale (transmission de l'influx nerveux) est accompagnée d'une augmentation de la capture de glucose, issu de la circulation sanguine, par les astrocytes. Ce phénomène est appelé le «couplage neurométabolique » entre neurones et astrocytes. L'ion sodium fait partie des mécanismes cellulaires entrant en fonction lors de ces processus. Ainsi, dans le cadre de cette thèse, les aspects dynamiques de la régulation du sodium astrocytaire et leurs implications dans le couplage neurométabolique ont été étudiés par des techniques d'imagerie cellulaires. Ces études ont démontré que les mitochondries, machineries cellulaires convertissant l'énergie contenue dans le glucose, participent à la régulation du sodium astrocytaire. De plus, ce travail de thèse a permis de découvrir que les astrocytes sont capables de se transmettre, sous forme de vagues de sodium se propageant de cellules en cellules, un message donnant l'ordre d'accroître leur consommation d'énergie. Cette voie de signalisation leur permettrait de fournir de l'énergie aux neurones suite à leur activation. RESUME Le glutamate libéré dans la fente synaptique pendant l'activité neuronale, est éliminé par les astrocytes environnants. Le glutamate est co-transporté avec des ions sodiques, induisant une augmentation intracellulaire de sodium (Na+i) dans les astrocytes. Cette élévation de Na+i déclenche une cascade de mécanismes moléculaires qui aboutissent à la production de substrats énergétiques pouvant être utilisés par les neurones. Durant cette thèse, la mesure simultanée du sodium mitochondrial (Na+mit) et cytosolique par des techniques d'imagerie utilisant des sondes fluorescentes spécifiques, a indiqué que les variations de Na+i induites par le transport du glutamate sont transmises aux mitochondries. De plus, les voies d'entrée et de sortie du sodium mitochondrial ont été identifiées. L'échangeur de Na+ et de Ca2+ mitochondrial semble jouer un rôle primordial dans l'influx de Na+mit, alors que l'efflux de Na+mit est pris en charge par l'échangeur de Na+ et de H+ mitochondrial. L'étude du Na+mit a nécessité l'utilisation d'un système de photoactivation. Les sources de lumière ultraviolette (UV) classiques utilisées à cet effet (lasers, lampes à flash) ayant plusieurs désavantages, une alternative efficace et peu coûteuse a été développée. Il s'agit d'un système compact utilisant une diode électroluminescente (LED) à haute puissance et de longueur d'onde de 365nm. En plus de leurs rôles dans le couplage neurométabolique, les astrocytes participent à la signalisation multicellulaire en transmettant des vagues intercellulaires de calcium. Ce travail de thèse démontre également que des vagues intercellulaires de sodium peuvent être évoquées en parallèle à ces vagues calciques. Le glutamate, suite à sa libération par un mécanisme dépendent du calcium, est réabsorbé par les transporteurs au glutamate. Ce mécanisme a pour conséquence la génération de vagues sodiques se propageant de cellules en cellules. De plus, ces vagues sodiques sont corrélées spatialement avec une consommation accrue de glucose par les astrocytes. En conclusion, ce travail de thèse a permis de montrer que le signal sodique astrocytaire, déclenché en réponse au glutamate, se propage à la fois de façon intracellulaire aux mitochondries et de façon intercellulaire. Ces résultats suggèrent que les astrocytes fonctionnent comme un réseau de cellules nécessaire au couplage énergétique concerté entre neurones et astrocytes et que le sodium est un élément clé dans les mécanismes de signalisations cellulaires sous-jacents. SUMMARY Glutamate, released in the synaptic cleft during neuronal activity, is removed by surrounding astrocytes. Glutamate is taken-up with Na+ ions by specific transporters, inducing an intracellular Na+ (Na+i) elevation in astrocytes which triggers a cascade of molecular mechanisms that provides metabolic substrates to neurons. Thus, astrocytic Na+i homeostasis represents a key component of the so-called neurometabolic coupling. In this context, the first part of this thesis work was aimed at investigating whether cytosolic Na+ changes are transmitted to mitochondria, which could therefore influence their function and contribute to the overall intracellular Na+ regulation. Simultaneous monitoring of both mitochondrial Na+ (Na+mit) and cytosolic Na+ changes with fluorescent dyes revealed that glutamate-evoked cytosolic Na+ elevations are indeed transmitted to mitochondria. The mitochondrial Na+/Ca2+ exchangers have a prominent role in the regulation of Na+mit influx pathway, and Na+mit extrusion appears to be mediated by Na+/H+ exchangers. To demonstrate the implication of Na+/Ca2+ exchangers, this study has required the technical development of an UV-flash photolysis system. Because light sources for flash photolysis have to be powerful and in the near UV range, the use of UV lasers or flash lamps is usually required. As an alternative to these UV sources that have several drawbaks, we developped a compact, efficient and lowcost flash photolysis system which employs a high power 365nm light emitting diode. In addition to their role in neurometabolic coupling, astrocytes participate in multicellular signaling by transmitting intercellular Ca2+ waves. The third part of this thesis show that intercellular Na+ waves can be evoked in parallel to Ca2+ waves. Glutamate released by a Ca2+ wave-dependent mechanism is taken up by glutamate transporters, resulting in a regenerative propagation of cytosolic Na+ increases. Na+ waves in turn lead to a spatially correlated increase in glucose uptake. In conclusion, the present thesis demonstrates that glutamate-induced Na+ changes occurring in the cytosol of astrocytes propagate to both the mitochondrial matrix and the astrocytic network. These results furthermore support the view that astrocytic Na+ is a signal coupled to the brain energy metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a study of binary mixtures of Bose-Einstein condensates confined in a double-well potential within the framework of the mean field Gross-Pitaevskii (GP) equation. We re-examine both the single component and the binary mixture cases for such a potential, and we investigate what are the situations in which a simpler two-mode approach leads to an accurate description of their dynamics. We also estimate the validity of the most usual dimensionality reductions used to solve the GP equations. To this end, we compare both the semi-analytical two-mode approaches and the numerical simulations of the one-dimensional (1D) reductions with the full 3D numerical solutions of the GP equation. Our analysis provides a guide to clarify the validity of several simplified models that describe mean-field nonlinear dynamics, using an experimentally feasible binary mixture of an F = 1 spinor condensate with two of its Zeeman manifolds populated, m = ±1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a study of binary mixtures of Bose-Einstein condensates confined in a double-well potential within the framework of the mean field Gross-Pitaevskii (GP) equation. We re-examine both the single component and the binary mixture cases for such a potential, and we investigate what are the situations in which a simpler two-mode approach leads to an accurate description of their dynamics. We also estimate the validity of the most usual dimensionality reductions used to solve the GP equations. To this end, we compare both the semi-analytical two-mode approaches and the numerical simulations of the one-dimensional (1D) reductions with the full 3D numerical solutions of the GP equation. Our analysis provides a guide to clarify the validity of several simplified models that describe mean-field nonlinear dynamics, using an experimentally feasible binary mixture of an F = 1 spinor condensate with two of its Zeeman manifolds populated, m = ±1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anti-idiotype antibody therapy of B-cell lymphomas, despite numerous promising experimental and clinical studies, has so far met with limited success. Tailor-made monoclonal anti-idiotype antibodies have been injected into a large series of lymphoma patients, with a few impressive complete tumour remissions but a large majority of negative responses. The results presented here suggest that, by coupling to antilymphoma idiotype antibodies a few molecules of the tetanus toxin universal epitope peptide P2 (830-843), one could markedly increase the efficiency of this therapy. We show that after 2-hr incubation with conjugates consisting of the tetanus toxin peptide P2 coupled by an S-S bridge to monoclonal antibodies directed to the lambda light chain of human immunoglobulin, human B-lymphoma cells can be specifically lysed by a CD4 T-lymphocyte clone specific for the P2 peptide. Antibody without peptide did not induce B-cell killing by the CD4 T-lymphocyte clone. The free cysteine-peptide was also able to induce lysis of the B-lymphoma target by the T-lymphocyte clone, but at a molar concentration 500 to 1000 times higher than that of the coupled peptide. Proliferation assays confirmed that the antibody-peptide conjugate was antigenically active at a much lower concentration than the free peptide. They also showed that antibody-peptide conjugates required an intact processing function of the B cell for peptide presentation, which could be selectively inhibited by leupeptin and chloroquine.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Adobe (R) animation is presented for use in undergraduate Biochemistry courses, illustrating the mechanism of Na+ and K+ translocation coupled to ATP hydrolysis by the (Na, K)-ATPase, a P-2c-type ATPase, or ATP-powered ion pump that actively translocates cations across plasma membranes. The enzyme is also known as an E-1/E-2-ATPase as it undergoes conformational changes between the E-1 and E-2 forms during the pumping cycle, altering the affinity and accessibility of the transmembrane ion-binding sites. The animation is based on Horisberger's scheme that incorporates the most recent significant findings to have improved our understanding of the (Na, K)-ATPase structure function relationship. The movements of the various domains within the (Na, K)-ATPase alpha-subunit illustrate the conformational changes that occur during Na+ and K+ translocation across the membrane and emphasize involvement of the actuator, nucleotide, and phosphorylation domains, that is, the "core engine" of the pump, with respect to ATP binding, cation transport, and ADP and P-i release.