985 resultados para Wave Modes
Microwave plasma discharge produced and sustained by the surface wave propagating along a metal wire
Resumo:
A theoretical model of the plasma discharge in a metal cylinder pumped by an operating gas of an arbitrary nature is presented. The ionization is carried out by the surface wave (SW) propagating along a coaxial metal wire. The model includes the local dispersion relation, the energy balance equation, and the relation between the absorbed power per unit length and the local plasma density. Two typical regimes of the discharge are analyzed. In both regimes the axial and radial profiles of the plasma density of the electromagnetic field components and of the SW intensity are obtained. The possible use of the obtained results in plasma technology are discussed.
Resumo:
In this study, the process of the resonant second harmonics generation of the submillimeter (SM), which is of interest for design of the semiconductor frequency multipliers is evaluated. Particularly, the possibility to use the semiconductor superlattice-metal structures as an effective second harmonics generator is demonstrated.
Resumo:
The structure of a microwave gas discharge produced and sustained by a surface wave (SW) propagating along a cylindrical metal antenna with a dielectric coating is studied. The SW that produces and sustains the microwave gas discharge propagates along an external magnetic field and has an eigenfrequency in the range between the electron cyclotron and electron plasma frequencies. The presence of a dielectric (vacuum) sheath region separating the antenna from the plasma is assumed. The spatial distributions of the produced plasma density, electromagnetic fields, energy flow density, phase velocity and reverse skin depth of the SW are obtained analytically and numerically.
Resumo:
An analysis of the emissions from 14 CNG and 5 Diesel buses was conducted during April & May, 2006. Studies were conducted at both steady state and transient driving modes on a vehicle dynamometer utilising a CVS dilution system. This article will focus on the volatile properties of particles from 4 CNG and 4 Diesel vehicles from within this group with a priority given to the previously un-investigated CNG emissions produced at transient loads. Particle number concentration data was collected by three CPC’s (TSI 3022, 3010 & 3782WCPC) having D50 cut-offs set to 5nm, 10nm & 20nm respectively. Size distribution data was collected using a TSI 3080 SMPS with a 3025 CPC during the steady state driving modes. During transient cycles mono-disperse “slices” of between 5nm & 25nm were measured. The volatility of these particles was determined by placing a thermodenuder before the 3022 and the SMPS and measuring the reduction in particle number concentration as the temperature in the thermodenuder was increased. This was then normalised against the total particle count given by the 3010 CPC to provide high resolution information on the reduction in particle concentration with respect to temperature.
Resumo:
A high-frequency-link (HFL) micro inverter with a front-end diode clamped multi-level inverter and a grid-connected half-wave cycloconverter is proposed. The diode clamped multi-level inverter with an auxiliary capacitor is used to generate high-frequency (HF) three level quasi square-wave output and it is fed into a series resonant tank to obtain high frequency continuous sinusoidal current. The obtained continuous sinusoidal current is modulated by using the grid-connected half-wave cycloconverter to obtain grid synchronized output current in phase with the grid voltage. The phase shift power modulation is used with auxiliary capacitor at the front-end multi-level inverter to have soft-switching. The phase shift between the HFL resonant current and half-wave cycloconverter input voltage is modulated to obtain grid synchronized output current.
Resumo:
While the half-angle which encloses a Kelvin ship wave pattern is commonly accepted to be 19.47 degrees, recent observations and calculations for sufficiently fast-moving ships suggest that the apparent wake angle decreases with ship speed. One explanation for this decrease in angle relies on the assumption that a ship cannot generate wavelengths much greater than its hull length. An alternative interpretation is that the wave pattern that is observed in practice is defined by the location of the highest peaks; for wakes created by sufficiently fast-moving objects, these highest peaks no longer lie on the outermost divergent waves, resulting in a smaller apparent angle. In this paper, we focus on the problems of free surface flow past a single submerged point source and past a submerged source doublet. In the linear version of these problems, we measure the apparent wake angle formed by the highest peaks, and observe the following three regimes: a small Froude number pattern, in which the divergent waves are not visible; standard wave patterns for which the maximum peaks occur on the outermost divergent waves; and a third regime in which the highest peaks form a V-shape with an angle much less than the Kelvin angle. For nonlinear flows, we demonstrate that nonlinearity has the effect of increasing the apparent wake angle so that some highly nonlinear solutions have apparent wake angles that are greater than Kelvin's angle. For large Froude numbers, the effect on apparent wake angle can be more dramatic, with the possibility of strong nonlinearity shifting the wave pattern from the third regime to the second. We expect our nonlinear results will translate to other more complicated flow configurations, such as flow due to a steadily moving closed body such as a submarine.
Resumo:
Micrometre-sized MgB2 crystals of varying quality, synthesized at low temperature and autogeneous pressure, are compared using a combination of Raman and Infra-Red (IR) spectroscopy. These data, which include new peak positions in both spectroscopies for high quality MgB2, are interpreted using DFT calculations on phonon behaviour for symmetry-related structures. Raman and IR activity additional to that predicted by point group analyses of the P6/mmm symmetry are detected. These additional peaks, as well as the overall shapes of calculated phonon dispersion (PD) models are explained by assuming a double super-lattice, consistent with a lower symmetry structure for MgB2. A 2x super-lattice in the c-direction allows a simple correlation of the pair breaking energy and the superconducting gap by activation of corresponding acoustic frequencies. A consistent physical interpretation of these spectra is obtained when the position of a phonon anomaly defines a super-lattice modulation in the a-b plane.
Resumo:
Part of the Next Wave MEMBRANE Project, Great Expectations draws attention to the parallels between our expectations of art and new technology to make the world a better place. The theme of the 2008 Next Wave Festival, ‘Closer Together’, refers to the way society is ― for the better or for the worse ― becoming increasingly connected by media and communication technologies. Sceptical of the acclaimed social achievements of new technologies, Boxcopy: Contemporary Art Space, a Brisbane-based artist-run initiative, explores the futility of human activities, including art production and consumption, with a collection of works created by young and emerging Brisbane artists. Works for this project include: Early machines such as the Commodore 64 were tape-based, and hence had their games distributed on ordinary cassettes (2009) by Tim Kerr & Extra Features (2008) by Tim Woodward; Spine (2008), Joseph Briekers; Whiteout (2008), Channon Goodwin; Explosive Revelations (2008), Daniel McKewen.
Resumo:
In this essay, I present a reflective and generative analysis of Business Process Management research, in which I analyze process management and the surrounding research program from the viewpoint of a theoretical paradigm embracing analytical, empirical, explanatory and design elements. I argue that this view not only reconciles different perceptions of BPM and different research streams, but that it also informs ways in which the BPM research program could develop into a much richer, more inclusive and overall more significant body of work than it has to date. I define three perspectives on a BPM research agenda, give several examples of exciting existing research, and offer key opportunities for further research that can (a) strengthen the core of BPM, (b) generate novel theory from BPM in relevant and topical big issue domains, and (c) explore more rigorously and comprehensively the protective belt of BPM assumptions that much of the present research abides by. The essay ends with some recommendations for continuing the debate about what constitutes BPM and some suggestions for how future research in this area might be carried out.
Resumo:
The political question of how the will of a community is to be democratically formed and adhered to, the question of social democracy, is normatively tied to the mode of criminal justice employed within that democratic public sphere. Liberal, republican, procedural and communitarian forms of democratic will-formation respectively reflect retributive,restorative, procedural and co-operative modes of criminal justice. After first elaborating these links through the critical response of republican and procedural theories of democracy to the liberal practice of democratic will-formation and its retributive mode of justice, our discussion considers the recent practice of restorative and procedural justice with respect to Indigenous youth; and this in the context of a severely diminished role for Indigenous justice agencies in the public sphere. In light of certain shortcomings in both the restorative and procedural modes of justice, and so too with republican and procedural understandings of the democratic public sphere, we turn to a discussion of procedural communitarianism, anchored as it is in Dewey’s notion of social co-operation. From here we attempt a brief formulation of what a socially co-operative mode of justice might consist of; a mode of justice where historically racial and economically coercive injustices are sufficiently recognised.
Resumo:
This research measured particle and gaseous emissions from ships and trains operating within the Port of Brisbane, and explored their influence on ambient air composition at a downwind suburban measurement site. The ship and train emission factor investigations resulted in the development of novel measurement techniques which permit the quantification of particle and gaseous emission factors using samples collected from post-emission exhaust plumes. The urban influence investigation phase of the project produced a new approach to identifying influences from ship emissions.