946 resultados para Vaginal Ring
Resumo:
Ring rolling is an established method to produce seamless rings of different cross-sectional geometries. For dish shaped rings, there are applications in different areas such as offshore, aeronautics or the energy sector. At the moment, dish shaped rings are produced by machining of rings with rectangular shaped cross section, by (open die) hollow forging on a conical mandrel or by using shaped ring rolling tools. These ways of manufacturing have the disadvantage of high material waste, additional costs for special tools, long process time and limited or inflexible geometries. Therefore, the manufacturing of dish shaped rings on conventional radial-axial ring rolling mills would expand the range of products for ring producers. The aim of this study is to investigate the feasibility of an alternative to the current manufacturing processes, without requiring additional tooling and material costs. Therefore, the intended formation of dish shaped rings-previously regarded as a form error-is investigated. Based on an analysis of geometrical requirements and metal flow mechanisms, a rolling strategy is presented, causing dishing and ring climbing by a large height reduction of the ring. Using this rolling strategy dish shaped rings with dishing angles up to 18° were achieved. In addition to the experiments finite element method (FEM)-simulations of the process have been successfully conducted, in order to analyze the local strain evolution. However, when the contact between ring and main roll is lost in the process the ring starts to oscillate around the mandrel and neither dishing nor ring climbing is observed. © 2013 German Academic Society for Production Engineering (WGP).
Resumo:
In conventional Finite Element Analysis (FEA) of radial-axial ring rolling (RAR) the motions of all tools are usually defined prior to simulation in the preprocessing step. However, the real process holds up to 8 degrees of freedom (DOF) that are controlled by industrial control systems according to actual sensor values and preselected control strategies. Since the histories of the motions are unknown before the experiment and are dependent on sensor data, the conventional FEA cannot represent the process before experiment. In order to enable the usage of FEA in the process design stage, this approach integrates the industrially applied control algorithms of the real process including all relevant sensors and actuators into the FE model of ring rolling. Additionally, the process design of a novel process 'the axial profiling', in which a profiled roll is used for rolling axially profiled rings, is supported by FEA. Using this approach suitable control strategies can be tested in virtual environment before processing. © 2013 AIP Publishing LLC.
Resumo:
In FEA of ring rolling processes the tools' motions usually are defined prior to simulation. This procedure neglects the closed-loop control, which is used in industrial processes to control up to eight degrees of freedom (rotations, feed rates, guide rolls) in real time, taking into account the machine's performance limits as well as the process evolution. In order to close this gap in the new simulation approach all motions of the tools are controlled according to sensor values which are calculated within the FE simulation. This procedure leads to more realistic simulation results in comparison to the machine behaviour. © 2012 CIRP.
Resumo:
Split-ring resonators represent the ideal route to achieve optical control of the incident light at THz frequencies. These subwavelength metamaterial elements exhibit broad resonances that can be easily tuned lithographically. We have realized a design based on the interplay between the resonances of metallic split rings and the electronic properties of monolayer graphene integrated in a single device. By varying the major carrier concentration of graphene, an active modulation of the optical intensity was achieved in the frequency range between 2.2 and 3.1 THz, achieving a maximum modulation depth of 18%, with a bias as low as 0.5 V.
Resumo:
We demonstrate passive mode-locking of a bismuth-doped fiber laser using a single-wall nanotube-based saturable absorber. Stable operation in the all-normal dispersion and average soliton regime is obtained, with an all-fiber integrated format. © 2010 Optical Society of America.
Resumo:
Ring rolling is an incremental bulk forming process for the near-net-shape production of seamless rings. This paper shows how nowadays the process design and optimization can be efficiently supported by simulation methods. For reliable predictions of the material flow and the microstructure evolution it's necessary to include a real ring rolling mill's control algorithm into the model. Furthermore an approach for the online measurement of the profile evolution during the process is presented by means of axial profiling in ring rolling. Hence the definition of new ring rolling strategies is possible even for advanced geometries.
Resumo:
We demonstrate the tunability of a silicon nitride micro-resonator using the concept of Digital Microfluidics. Our system allows driving micro-droplets on-chip, enabling the control of the effective refractive index at the vicinity of the resonator. © 2010 OSA/FiO/LS 2010.
Resumo:
A widely tunable fiber ring laser, utilising a SWNT/polycarbonate film mode-locker and a 3-nm tunable filter, has been realized. 2.3ps pulse generation over 27nm spectral range is achieved for a constant pump power of 25mW. © 2007 Optical Society of America.
Resumo:
A widely tunable fiber ring laser, utilising a SWNT/polycarbonate film mode-locker and a 3-nm tunable filter, has been realized. 2.3ps pulse generation over 27nm spectral range is achieved for a constant pump power of 25mW. © 2008 Optical Society of America.
Resumo:
The integration of quantum cascade lasers with devices capable of efficiently manipulating terahertz light represents a fundamental step for many different applications. Split-ring resonators, subwavelength metamaterial elements exhibiting broad resonances that are easily tuned lithographically, represent the ideal route to achieve such optical control of the incident light. We have realized a design based on the interplay between metallic split rings and the electronic properties of a graphene monolayer integrated into a single device. By acting on the doping level of graphene, an active modulation of the optical intensity was achieved in the frequency range between 2.2 and 3.1 THz, with a maximum modulation depth of 18%. © 2014 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The integration of quantum cascade lasers with devices capable of efficiently manipulating terahertz light, represents a fundamental step for many different applications. Split-ring resonators, sub-wavelength metamaterial elements exhibiting broad resonances that are easily tuned lithographically, represent the ideal route to achieve such optical control of the incident light. We have realized a design based on the interplay between metallic split rings and the electronic properties of a graphene monolayer integrated into a single device. By acting on the doping level of graphene, an active modulation of the optical intensity was achieved in the frequency range between 2.2 THz and 3.1 THz, with a maximum modulation depth of 18%.
Resumo:
We propose and simulate a new kind of compact polarizing beam splitter (PBS) based on a photonic crystal ring resonator (PCRR) with complete photonic bandgaps. The two polarized states are separated far enough by resonant and nonresonant coupling between the waveguide modes and the microring modes. Some defect holes are utilized to control the beam propagation. The simulated results obtained by the finite-difference time-domain method show that high transmission (over 95%) is obtained and the polarization separation is realized with a length as short as 3.1 mu m. The design of the proposed PBS can be flexible, thanks to the advantages of PCRRs.
Resumo:
We demonstrate a sub-nanosecond electro-optical switch with low crosstalk in a silicon-on-insulator (SOI) dual-coupled micro-ring embedded with p-i-n diodes. A crosstalk of -23 dB is obtained in the 20-mu m-radius micro-ring with the well-designing asymmetric dual-coupling structure. By optimizations of the doping profiles and the fabrication processes, the sub-nanosecond switch-on/off time of < 400 ps is finally realized under an electrical pre-emphasized driving signal. This compact and fast-response micro-ring switch, which can be fabricated by complementary metal oxide semiconductor (CMOS) compatible technologies, have enormous potential in optical interconnects of multicore networks-on-chip.
Resumo:
In the framework of the effective mass theory, this paper calculates the electron energy levels of an InAs/GaAs tyre-shape quantum ring (TSQR) by using the plane wave basis. The results show that the electron energy levels are sensitively dependent on the TSQR's section thickness d, and insensitively dependent on TSQR's section inner radius R-1 and TSQR's inner radius R-2. The model and results provide useful information for the design and fabrication of InAs/GaAs TSQRs.
Resumo:
Origin of polarization sensitivity of photonic wire waveguides (PWWs) is analysed and the effective refractive indices of two different polarization states are calculated by the three-dimensional full-vector beam propagation method. We find that PWWs are polarization insensitive if the distribution of its refractive index is uniform and the cross section is square. An MRR based on such a polarization-insensitive PWW is fabricated on an 8-inch silicon-on-insulator wafer using 248-nm deep ultraviolet lithography and reactive ion etching. The quasi-TE mode is resonant at 1542.25 nm and 1558.90 nm, and the quasi-TM mode is resonant at 1542.12 nm and 1558.94 nm. The corresponding polarization shift is 0.13 nm at the shorter wavelength and 0.04 nm at the longer wavelength. Thus the fabricated device is polarization independent. The extinction ratio is larger than 10 dB. The 3 dB bandwidth is about 2.5 nm and the Qvalue is about 620 at 1558.90 nm.