813 resultados para VISUAL INSPECTION METHODS
Resumo:
Purpose: To investigate the impact of glaucomatous visual impairment on postural sway and falls among older adults.Methods: The sample comprised 72 community-dwelling older adults with open-angle glaucoma, aged 74.0 5.8 years (range 62 to 90 years). Measures of visual function included binocular visual acuity (high-contrast), binocular contrast sensitivity (Pelli- Robson) and binocular visual fields (merged monocular HFA 24-2 SITA-Std). Postural stability was assessed under four conditions: eyes open and closed, on a firm and on a foam surface. Falls were monitored for six months with prospective falls diaries. Regression models, adjusting for age and gender, examined the association between vision measures and postural stability (linear regression) and the number of falls (negative binomial regression). Results: Greater visual field loss was significantly associated with poorer postural stability with eyes open, both on firm (r = 0.34, p < 0.01) and foam (r = 0.45, p < 0.001) surfaces. Eighteen (25 per cent) participants experienced at least one fall: 12 (17 per cent) participants fell only once and six (eight per cent) participants fell two or more times (up to five falls). Visual field loss was significantly associated with falling; the rate of falls doubled for every 10 dB reduction in field sensitivity (rate ratio = 1.08, 95% CI = 1.02–1.13). Importantly, in a model comprising upper and lower field sensitivity, only lower field loss was significantly associated with the number of falls (rate ratio = 1.17, 95% CI = 1.04–1.33). Conclusions: Binocular visual field loss was significantly associated with postural instability and falls among older adults with glaucoma. These findings provide valuable directions for developing falls risk assessment and falls prevention strategies for this population.
Resumo:
Purpose: There have been few studies of visual temporal processing of myopic eyes. This study investigated the visual performance of emmetropic and myopic eyes using a backward visual masking location task. Methods: Data were collected for 39 subjects (15 emmetropes, 12 stable myopes, 12 progressing myopes). In backward visual masking, a target’s visibility is reduced by a mask presented in quick succession ‘after’ the target. The target and mask stimuli were presented at different interstimulus intervals (from 12 to 300 ms). The task involved locating the position of a target letter with both a higher (seven per cent) and a lower (five per cent) contrast. Results: Emmetropic subjects had significantly better performance for the lower contrast location task than the myopes (F2,36 = 22.88; p < 0.001) but there was no difference between the progressing and stable myopic groups (p = 0.911). There were no differences between the groups for the higher contrast location task (F2,36 = 0.72, p = 0.495). No relationship between task performance and either the magnitude of myopia or axial length was found for either task. Conclusions: A location task deficit was observed in myopes only for lower contrast stimuli. Both emmetropic and myopic groups had better performance for the higher contrast task compared to the lower contrast task, with myopes showing considerable improvement. This suggests that five per cent contrast may be the contrast threshold required to bias the task towards the magnocellular system (where myopes have a temporal processing deficit). Alternatively, the task may be sensitive to the contrast sensitivity of the observer.
Resumo:
This study is the first to investigate the effect of prolonged reading on reading performance and visual functions in students with low vision. The study focuses on one of the most common modes of achieving adequate magnification for reading by students with low vision, their close reading distance (proximal or relative distance magnification). Close reading distances impose high demands on near visual functions, such as accommodation and convergence. Previous research on accommodation in children with low vision shows that their accommodative responses are reduced compared to normal vision. In addition, there is an increased lag of accommodation for higher stimulus levels as may occur at close reading distance. Reduced accommodative responses in low vision and higher lag of accommodation at close reading distances together could impact on reading performance of students with low vision especially during prolonged reading tasks. The presence of convergence anomalies could further affect reading performance. Therefore, the aims of the present study were 1) To investigate the effect of prolonged reading on reading performance in students with low vision 2) To investigate the effect of prolonged reading on visual functions in students with low vision. This study was conducted as cross-sectional research on 42 students with low vision and a comparison group of 20 students with normal vision, aged 7 to 20 years. The students with low vision had vision impairments arising from a range of causes and represented a typical group of students with low vision, with no significant developmental delays, attending school in Brisbane, Australia. All participants underwent a battery of clinical tests before and after a prolonged reading task. An initial reading-specific history and pre-task measurements that included Bailey-Lovie distance and near visual acuities, Pelli-Robson contrast sensitivity, ocular deviations, sensory fusion, ocular motility, near point of accommodation (pull-away method), accuracy of accommodation (Monocular Estimation Method (MEM)) retinoscopy and Near Point of Convergence (NPC) (push-up method) were recorded for all participants. Reading performance measures were Maximum Oral Reading Rates (MORR), Near Text Visual Acuity (NTVA) and acuity reserves using Bailey-Lovie text charts. Symptoms of visual fatigue were assessed using the Convergence Insufficiency Symptom Survey (CISS) for all participants. Pre-task measurements of reading performance and accuracy of accommodation and NPC were compared with post-task measurements, to test for any effects of prolonged reading. The prolonged reading task involved reading a storybook silently for at least 30 minutes. The task was controlled for print size, contrast, difficulty level and content of the reading material. Silent Reading Rate (SRR) was recorded every 2 minutes during prolonged reading. Symptom scores and visual fatigue scores were also obtained for all participants. A visual fatigue analogue scale (VAS) was used to assess visual fatigue during the task, once at the beginning, once at the middle and once at the end of the task. In addition to the subjective assessments of visual fatigue, tonic accommodation was monitored using a photorefractor (PlusoptiX CR03™) every 6 minutes during the task, as an objective assessment of visual fatigue. Reading measures were done at the habitual reading distance of students with low vision and at 25 cms for students with normal vision. The initial history showed that the students with low vision read for significantly shorter periods at home compared to the students with normal vision. The working distances of participants with low vision ranged from 3-25 cms and half of them were not using any optical devices for magnification. Nearly half of the participants with low vision were able to resolve 8-point print (1M) at 25 cms. Half of the participants in the low vision group had ocular deviations and suppression at near. Reading rates were significantly reduced in students with low vision compared to those of students with normal vision. In addition, there were a significantly larger number of participants in the low vision group who could not sustain the 30-minute task compared to the normal vision group. However, there were no significant changes in reading rates during or following prolonged reading in either the low vision or normal vision groups. Individual changes in reading rates were independent of their baseline reading rates, indicating that the changes in reading rates during prolonged reading cannot be predicted from a typical clinical assessment of reading using brief reading tasks. Contrary to previous reports the silent reading rates of the students with low vision were significantly lower than their oral reading rates, although oral and silent reading was assessed using different methods. Although the visual acuity, contrast sensitivity, near point of convergence and accuracy of accommodation were significantly poorer for the low vision group compared to those of the normal vision group, there were no significant changes in any of these visual functions following prolonged reading in either group. Interestingly, a few students with low vision (n =10) were found to be reading at a distance closer than their near point of accommodation. This suggests a decreased sensitivity to blur. Further evaluation revealed that the equivalent intrinsic refractive errors (an estimate of the spherical dioptirc defocus which would be expected to yield a patient’s visual acuity in normal subjects) were significantly larger for the low vision group compared to those of the normal vision group. As expected, accommodative responses were significantly reduced for the low vision group compared to the expected norms, which is consistent with their close reading distances, reduced visual acuity and contrast sensitivity. For those in the low vision group who had an accommodative error exceeding their equivalent intrinsic refractive errors, a significant decrease in MORR was found following prolonged reading. The silent reading rates however were not significantly affected by accommodative errors in the present study. Suppression also had a significant impact on the changes in reading rates during prolonged reading. The participants who did not have suppression at near showed significant decreases in silent reading rates during and following prolonged reading. This impact of binocular vision at near on prolonged reading was possibly due to the high demands on convergence. The significant predictors of MORR in the low vision group were age, NTVA, reading interest and reading comprehension, accounting for 61.7% of the variances in MORR. SRR was not significantly influenced by any factors, except for the duration of the reading task sustained; participants with higher reading rates were able to sustain a longer reading duration. In students with normal vision, age was the only predictor of MORR. Participants with low vision also reported significantly greater visual fatigue compared to the normal vision group. Measures of tonic accommodation however were little influenced by visual fatigue in the present study. Visual fatigue analogue scores were found to be significantly associated with reading rates in students with low vision and normal vision. However, the patterns of association between visual fatigue and reading rates were different for SRR and MORR. The participants with low vision with higher symptom scores had lower SRRs and participants with higher visual fatigue had lower MORRs. As hypothesized, visual functions such as accuracy of accommodation and convergence did have an impact on prolonged reading in students with low vision, for students whose accommodative errors were greater than their equivalent intrinsic refractive errors, and for those who did not suppress one eye. Those students with low vision who have accommodative errors higher than their equivalent intrinsic refractive errors might significantly benefit from reading glasses. Similarly, considering prisms or occlusion for those without suppression might reduce the convergence demands in these students while using their close reading distances. The impact of these prescriptions on reading rates, reading interest and visual fatigue is an area of promising future research. Most importantly, it is evident from the present study that a combination of factors such as accommodative errors, near point of convergence and suppression should be considered when prescribing reading devices for students with low vision. Considering these factors would also assist rehabilitation specialists in identifying those students who are likely to experience difficulty in prolonged reading, which is otherwise not reflected during typical clinical reading assessments.
Resumo:
Position estimation for planetary rovers has been typically limited to odometry based on proprioceptive measurements such as the integration of distance traveled and measurement of heading change. Here we present and compare two methods of online visual odometry suited for planetary rovers. Both methods use omnidirectional imagery to estimate motion of the rover. One method is based on robust estimation of optical flow and subsequent integration of the flow. The second method is a full structure-from-motion solution. To make the comparison meaningful we use the same set of raw corresponding visual features for each method. The dataset is an sequence of 2000 images taken during a field experiment in the Atacama desert, for which high resolution GPS ground truth is available.
Resumo:
Wide-angle images exhibit significant distortion for which existing scale-space detectors such as the scale-invariant feature transform (SIFT) are inappropriate. The required scale-space images for feature detection are correctly obtained through the convolution of the image, mapped to the sphere, with the spherical Gaussian. A new visual key-point detector, based on this principle, is developed and several computational approaches to the convolution are investigated in both the spatial and frequency domain. In particular, a close approximation is developed that has comparable computation time to conventional SIFT but with improved matching performance. Results are presented for monocular wide-angle outdoor image sequences obtained using fisheye and equiangular catadioptric cameras. We evaluate the overall matching performance (recall versus 1-precision) of these methods compared to conventional SIFT. We also demonstrate the use of the technique for variable frame-rate visual odometry and its application to place recognition.
Resumo:
Inspection of solder joints has been a critical process in the electronic manufacturing industry to reduce manufacturing cost, improve yield, and ensure product quality and reliability. The solder joint inspection problem is more challenging than many other visual inspections because of the variability in the appearance of solder joints. Although many research works and various techniques have been developed to classify defect in solder joints, these methods have complex systems of illumination for image acquisition and complicated classification algorithms. An important stage of the analysis is to select the right method for the classification. Better inspection technologies are needed to fill the gap between available inspection capabilities and industry systems. This dissertation aims to provide a solution that can overcome some of the limitations of current inspection techniques. This research proposes two inspection steps for automatic solder joint classification system. The “front-end” inspection system includes illumination normalisation, localization and segmentation. The illumination normalisation approach can effectively and efficiently eliminate the effect of uneven illumination while keeping the properties of the processed image. The “back-end” inspection involves the classification of solder joints by using Log Gabor filter and classifier fusion. Five different levels of solder quality with respect to the amount of solder paste have been defined. Log Gabor filter has been demonstrated to achieve high recognition rates and is resistant to misalignment. Further testing demonstrates the advantage of Log Gabor filter over both Discrete Wavelet Transform and Discrete Cosine Transform. Classifier score fusion is analysed for improving recognition rate. Experimental results demonstrate that the proposed system improves performance and robustness in terms of classification rates. This proposed system does not need any special illumination system, and the images are acquired by an ordinary digital camera. In fact, the choice of suitable features allows one to overcome the problem given by the use of non complex illumination systems. The new system proposed in this research can be incorporated in the development of an automated non-contact, non-destructive and low cost solder joint quality inspection system.
Resumo:
Purpose: Flickering stimuli increase the metabolic demand of the retina,making it a sensitive perimetric stimulus to the early onset of retinal disease. We determine whether flickering stimuli are a sensitive indicator of vision deficits resulting from to acute, mild systemic hypoxia when compared to standard static perimetry. Methods: Static and flicker visual perimetry were performed in 14 healthy young participants while breathing 12% oxygen (hypoxia) under photopic illumination. The hypoxia visual field data were compared with the field data measured during normoxia. Absolute sensitivities (in dB) were analysed in seven concentric rings at 1°, 3°, 6°, 10°, 15°, 22° and 30° eccentricities as well as mean defect (MD) and pattern defect (PD) were calculated. Preliminary data are reported for mesopic light levels. Results: Under photopic illumination, flicker and static visual field sensitivities at all eccentricities were not significantly different between hypoxia and normoxia conditions. The mean defect and pattern defect were not significantly different for either test between the two oxygenation conditions. Conclusion: Although flicker stimulation increases cellular metabolism, flicker photopic visual field impairment is not detected during mild hypoxia. These findings contrast with electrophysiological flicker tests in young participants that show impairment at photopic illumination during the same levels of mild hypoxia. Potential mechanisms contributing to the difference between the visual fields and electrophysiological flicker tests including variability in perimetric data, neuronal adaptation and vascular autoregulation, are considered. The data have implications for the use of visual perimetry in the detection of ischaemic/hypoxic retinal disorders under photopic and mesopic light levels.
Resumo:
Of the numerous factors that play a role in fatal pedestrian collisions, the time of day, day of the week, and time of year can be significant determinants. More than 60% of all pedestrian collisions in 2007 occurred at night, despite the presumed decrease in both pedestrian and automobile exposure during the night. Although this trend is partially explained by factors such as fatigue and alcohol consumption, prior analysis of the Fatality Analysis Reporting System database suggests that pedestrian fatalities increase as light decreases after controlling for other factors. This study applies graphical cross-tabulation, a novel visual assessment approach, to explore the relationships among collision variables. The results reveal that twilight and the first hour of darkness typically observe the greatest frequency of pedestrian fatal collisions. These hours are not necessarily the most risky on a per mile travelled basis, however, because pedestrian volumes are often still high. Additional analysis is needed to quantify the extent to which pedestrian exposure (walking/crossing activity) in these time periods plays a role in pedestrian crash involvement. Weekly patterns of pedestrian fatal collisions vary by time of year due to the seasonal changes in sunset time. In December, collisions are concentrated around twilight and the first hour of darkness throughout the week while, in June, collisions are most heavily concentrated around twilight and the first hours of darkness on Friday and Saturday. Friday and Saturday nights in June may be the most dangerous times for pedestrians. Knowing when pedestrian risk is highest is critically important for formulating effective mitigation strategies and for efficiently investing safety funds. This applied visual approach is a helpful tool for researchers intending to communicate with policy-makers and to identify relationships that can then be tested with more sophisticated statistical tools.
Resumo:
PURPOSE: This study investigated the effects of simulated visual impairment on nighttime driving performance and pedestrian recognition under real-road conditions. METHODS: Closed road nighttime driving performance was measured for 20 young visually normal participants (M = 27.5 +/- 6.1 years) under three visual conditions: normal vision, simulated cataracts, and refractive blur that were incorporated in modified goggles. The visual acuity levels for the cataract and blur conditions were matched for each participant. Driving measures included sign recognition, avoidance of low contrast road hazards, time to complete the course, and lane keeping. Pedestrian recognition was measured for pedestrians wearing either black clothing or black clothing with retroreflective markings on the moveable joints to create the perception of biological motion ("biomotion"). RESULTS: Simulated visual impairment significantly reduced participants' ability to recognize road signs, avoid road hazards, and increased the time taken to complete the driving course (p < 0.05); the effect was greatest for the cataract condition, even though the cataract and blur conditions were matched for visual acuity. Although visual impairment also significantly reduced the ability to recognize the pedestrian wearing black clothing, the pedestrian wearing "biomotion" was seen 80% of the time. CONCLUSIONS: Driving performance under nighttime conditions was significantly degraded by modest visual impairment; these effects were greatest for the cataract condition. Pedestrian recognition was greatly enhanced by marking limb joints in the pattern of "biomotion," which was relatively robust to the effects of visual impairment.
Resumo:
Purpose. To investigate evidence-based visual field size criteria for referral of low-vision (LV) patients for mobility rehabilitation. Methods. One hundred and nine participants with LV and 41 age-matched participants with normal sight (NS) were recruited. The LV group was heterogeneous with diverse causes of visual impairment. We measured binocular kinetic visual fields with the Humphrey Field Analyzer and mobility performance on an obstacle-rich, indoor course. Mobility was assessed as percent preferred walking speed (PPWS) and number of obstacle-contact errors. The weighted kappa coefficient of association (κr) was used to discriminate LV participants with both unsafe and inefficient mobility from those with adequate mobility on the basis of their visual field size for the full sample and for subgroups according to type of visual field loss and whether or not the participants had previously received orientation and mobility training. Results. LV participants with both PPWS <38% and errors >6 on our course were classified as having inadequate (inefficient and unsafe) mobility compared with NS participants. Mobility appeared to be first compromised when the visual field was less than about 1.2 steradians (sr; solid angle of a circular visual field of about 70° diameter). Visual fields <0.23 and 0.63 sr (31 to 52° diameter) discriminated patients with at-risk mobility for the full sample and across the two subgroups. A visual field of 0.05 sr (15° diameter) discriminated those with critical mobility. Conclusions. Our study suggests that: practitioners should be alert to potential mobility difficulties when the visual field is less than about 1.2 sr (70° diameter); assessment for mobility rehabilitation may be warranted when the visual field is constricted to about 0.23 to 0.63 sr (31 to 52° diameter) depending on the nature of their visual field loss and previous history (at risk); and mobility rehabilitation should be conducted before the visual field is constricted to 0.05 sr (15° diameter; critical).
Resumo:
Background: This study investigated the effects of experimentally induced visual impairment, headlamp glare and clothing on pedestrian visibility. Methods: 28 young adults (M=27.6±4.7 yrs) drove around a closed road circuit at night while pedestrians walked in place at the roadside. Pedestrians wore either black clothing, black clothing with a rectangular vest consisting of 1325 cm2 of retroreflective tape, or the same amount of tape positioned on the extremities in a configuration that conveyed biological motion (“biomotion”). Visual impairment was induced by goggles containing either blurring lenses, simulated cataracts, or clear lenses; visual acuity for the cataract and blurred lens conditions was matched. Drivers pressed a response pad when they first recognized that a pedestrian was present. Sixteen participants drove around the circuit in the presence of headlamp glare while twelve drove without glare. Results: Visual impairment, headlamp glare and pedestrian clothing all significantly affected drivers’ ability to recognize pedestrians (p<0.05). The simulated cataracts were more disruptive than blur, even though acuity was matched across the two manipulations. Pedestrians were recognized more often and at longer distances when they wore “biomotion” clothing than either the vest or black clothing, even in the presence of visual impairment and glare. Conclusions: Drivers’ ability to see and respond to pedestrians at night is degraded by modest visual impairments even when vision meets driver licensing requirements; glare further exacerbates these effects. Clothing that includes retroreflective tape in a biological motion configuration is relatively robust to visual impairment and glare.
Resumo:
PURPOSE: To investigate the impact of different levels of simulated visual impairment on the cognitive test performance of older adults and to compare this with previous findings in younger adults. METHODS.: Cognitive performance was assessed in 30 visually normal, community-dwelling older adults (mean = 70.2 ± 3.9 years). Four standard cognitive tests were used including the Digit Symbol Substitution Test, Trail Making Tests A and B, and the Stroop Color Word Test under three visual conditions: normal baseline vision and two levels of cataract simulating filters (Vistech), which were administered in a random order. Distance high-contrast visual acuity and Pelli-Robson letter contrast sensitivity were also assessed for all three visual conditions. RESULTS.: Simulated cataract significantly impaired performance across all cognitive test performance measures. In addition, the impact of simulated cataract was significantly greater in this older cohort than in a younger cohort previously investigated. Individual differences in contrast sensitivity better predicted cognitive test performance than did visual acuity. CONCLUSIONS.: Visual impairment can lead to slowing of cognitive performance in older adults; these effects are greater than those observed in younger participants. This has important implications for neuropsychological testing of older populations who have a high prevalence of cataract.
Resumo:
Purpose: To examine the relationship between visual impairment and functional status in a community-dwelling sample of older adults with glaucoma. Methods: This study included 74 community-dwelling older adults with open-angle glaucoma (aged 74 ± 6 years). Assessment of central vision included high-contrast visual acuity and Pelli-Robson contrast sensitivity. Binocular integrated visual fields were derived from merged monocular Humphrey Field Analyser visual field plots. Functional status outcome measures included physical performance tests (6-min walk test, timed up and go test and lower limb strength), a physical activity questionnaire (Physical Activity Scale for the Elderly) and an overall functional status score. Correlation and linear regression analyses, adjusting for age and gender, examined the association between visual impairment and functional status outcomes. Results: Greater levels of visual impairment were significantly associated with lower levels of functional status among community-dwelling older adults with glaucoma, independent of age and gender. Specifically, lower levels of visual function were associated with slower timed up and go performance, weaker lower limb strength, lower self-reported physical activity, and lower overall functional status scores. Of the components of vision examined, the inferior visual field and contrast factors were the strongest predictors of these functional outcomes, whereas the superior visual field factor was not related to functional status. Conclusions: Greater visual impairment, particularly in the inferior visual field and loss of contrast sensitivity, was associated with poorer functional status among older adults with glaucoma. The findings of this study highlight the potential links between visual impairment and the onset of functional decline. Interventions which promote physical activity among older adults with glaucoma may assist in preventing functional decline, frailty and falls, and improve overall health and well-being.
Resumo:
Purpose: Age-related macular degeneration (AMD) is the leading cause of irreversible visual impairment among older adults. This study explored the relationship between AMD, falls risk and other injuries and identified visual risk factors for these adverse events. Methods: Participants included 76 community-dwelling individuals with a range of severity of AMD (mean age, 77.0±6.9 years). Baseline assessment included binocular visual acuity, contrast sensitivity and merged visual fields. Participants completed monthly falls and injury diaries for one year following the baseline assessment. Results: Overall, 74% of participants reported having either a fall, injurious fall or other injury. Fifty-four percent of participants reported a fall and 30% reported more than one fall; of the 102 falls reported, 63% resulted in an injury. Most occurred outdoors (52%), between late morning and late afternoon (61%) and when navigating on level ground (62%). The most common non-fall injuries were lacerations (36%) and collisions with an object (35%). Reduced contrast sensitivity and visual acuity were associated with increased fall rate, after controlling for age, gender, cognitive function, cataract severity and self-reported physical function. Reduced contrast sensitivity was the only significant predictor of falls and other injuries. Conclusion: Among older adults with AMD, increased visual impairment was significantly associated with an increased incidence of falls and other injuries. Reduced contrast sensitivity was significantly associated with increased rates of falls, injurious falls and injuries, while reduced visual acuity was only associated with increased falls risk. These findings have important implications for the assessment of visually impaired older adults.
Resumo:
Trees, shrubs and other vegetation are of continued importance to the environment and our daily life. They provide shade around our roads and houses, offer a habitat for birds and wildlife, and absorb air pollutants. However, vegetation touching power lines is a risk to public safety and the environment, and one of the main causes of power supply problems. Vegetation management, which includes tree trimming and vegetation control, is a significant cost component of the maintenance of electrical infrastructure. For example, Ergon Energy, the Australia’s largest geographic footprint energy distributor, currently spends over $80 million a year inspecting and managing vegetation that encroach on power line assets. Currently, most vegetation management programs for distribution systems are calendar-based ground patrol. However, calendar-based inspection by linesman is labour-intensive, time consuming and expensive. It also results in some zones being trimmed more frequently than needed and others not cut often enough. Moreover, it’s seldom practicable to measure all the plants around power line corridors by field methods. Remote sensing data captured from airborne sensors has great potential in assisting vegetation management in power line corridors. This thesis presented a comprehensive study on using spiking neural networks in a specific image analysis application: power line corridor monitoring. Theoretically, the thesis focuses on a biologically inspired spiking cortical model: pulse coupled neural network (PCNN). The original PCNN model was simplified in order to better analyze the pulse dynamics and control the performance. Some new and effective algorithms were developed based on the proposed spiking cortical model for object detection, image segmentation and invariant feature extraction. The developed algorithms were evaluated in a number of experiments using real image data collected from our flight trails. The experimental results demonstrated the effectiveness and advantages of spiking neural networks in image processing tasks. Operationally, the knowledge gained from this research project offers a good reference to our industry partner (i.e. Ergon Energy) and other energy utilities who wants to improve their vegetation management activities. The novel approaches described in this thesis showed the potential of using the cutting edge sensor technologies and intelligent computing techniques in improve power line corridor monitoring. The lessons learnt from this project are also expected to increase the confidence of energy companies to move from traditional vegetation management strategy to a more automated, accurate and cost-effective solution using aerial remote sensing techniques.