901 resultados para Ultrashort pulses laser Grating


Relevância:

40.00% 40.00%

Publicador:

Resumo:

An index-coupled DFB laser with a sampled grating has been designed and fabricated. The key concept of the approaches is to utilize the +1st-order reflection of the sampled grating for laser operation, and use a conventional holographic exposure combined with the usual photolithography to form the sampled grating. The typical threshold current of the sampled grating DFB laser is 25 mA, and the optical output is about 10 mW at the injected current of 100 mA. The lasing wavelength of the device is 1.5314 mu m, which is the +1st-order peak of the sampled grating.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The lasing wavelength of a complex-coupled DFB laser is controlled by a sampled grating. The key concepts of the approach are to utilize the -1st order (negative first order) reflection of a sampled grating for laser single mode operation, and use conventional holographic exposure combined with the usual photolithography to fabricate the sampled grating. The typical threshold current of the sampled grating based DFB laser is 32 mA, and the optical output is about 10 mW at an injected current of 100 mA. The lasing wavelength of the device is 1.5356 mu m, which is the -1st order wavelength of the sampled grating.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Absolute measurement of detector quantum efficiency using optical parametric down-conversion has been extensively studied for the case of a continuous wave pump. In this paper, we have used the temporally and spatially correlated properties of the down-converted photon pairs generated in a nonlinear crystal pumped by a femtosecond laser pulse to perform an absolute measurement of detector quantum efficiency. The measured detector quantum efficiency is in excellent agreement with the measured value in the conventional way. A lens with a long focal length was adopted for efficiently increasing the intensity of the down-conversion entangled photon source.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An index-coupled distributed feedback laser with the sampled grating has been designed and fabricated. The +1(st) order reflection of the sampled grating is utilized for laser single mode operation, which is 1.5329 mu m in the experiment. The sampled grating is formed by a conventional holographic exposure combined with the usual photolithography. The typical threshold current of DFB laser with the sampled grating is 25mA, and the optical output is about 10mW at the injected current of 100mA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The scattering matrix method is used to analyze the multiple reflection effect between the laser diode facet and the fiber grating facet by considering the fiber grating external cavity laser diode (FGECL) as a four-mirror cavity laser. When neglecting other important parameters such as butt-coupling distance between the diode and the fiber facets, coupling efficiency, external cavity length, it is shown that low reflectivity is not a crucial factor for the laser characteristics such as SMSR. Experimentally high SMSR fiber grating external cavity laser is fabricated with a relatively large residual facet reflectivity (about 1%), which is coincident with our simulation results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A design of single-mode distributed feedback quantum cascade lasers (DFB-QCLs) with surface metal grating is described. A rigorous modal expansion theory is adopted to analyse the interaction between the waveguide mode and the surface plasmon wave for different grating parameters. A stable single-mode operation can be obtained in a wide range of grating depths and duty cycles. The single-mode operation of surface metal grating DFB-QCLs at room temperature for lambda = 8.5 mu m is demonstrated. The device shows a side-mode suppression ratio of above 20 dB. A linear tuning of wavelength with temperature indicates the stable single-mode operation without mode hopping.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel design approach to ultra-narrow transmission-band fiber Bragg grating (FBG) is proposed and demonstrated for the first time. The new grating consists of multiple identical distributed-Bragg reflector (DBR) cavities and a it-phase-shifted gap, and hence, the proposed laser is constructed by the cascade of these identical DBR fiber lasers. By manufacturing the proposed grating in a piece of Er-Yb codoped fiber, a single-wavelength single-longitudinal-mode (SLM) fiber laser with improved efficiency is demonstrated experimentally. The experimental results show that the pump-to-signal conversion efficiency of the proposed laser is improved by a factor of two in comparison with the optimized distributed-feedback (DFB) fiber lasers. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the assistance of a kind of photonic Robin Hood that is originated from four-wave mixing in a dispersion-flattened high-nonlinearity photonic-crystal fibre, a novel dual-wavelength erbium-doped fibre (EDF) laser is proposed and demonstrated by using a sampled fibre Bragg grating. The experiments show that, due to the contribution of the photonic Robin Hood, the proposed fibre laser has the advantage of excellent uniformity, high stability and stable operation at room temperature. Our dual-wavelength EDF laser has the unique merit that the wavelength spacing remains unchanged when tuning the two wavelengths of laser, and this laser is simpler and more stable than the laser reported by Liu et al. [Opt. Express, 13 142 (2005)].

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The characteristics of proton beam generated in the interaction of an ultrashort laser pulse with a large prepulse with solid foils are experimentally investigated. It is found that the proton beam emitted from the rear surface is not well collimated, and a "ring-like" structure with some "burst-like" angular modulation is presented in the spatial distribution. The divergence of the proton beam reduces significantly when the laser intensity is decreased. The "burst-like" modulation gradually fades out for the thicker target. It is believed that the large divergence angle and the modulated ring structure are caused by the shock wave induced by the large laser prepulse. A one-dimensional hydrodynamic code, MED103, is used to simulate the behavior of the shock wave produced by the prepulse. The simulation indicates that the rear surface of the foil target is significantly modified by the shock wave, consequently resulting in the experimental observations. (c) 2006 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The robustness and prolongation of multiple filamentation (MF) for femtosecond laser propagation in air are investigated experimentally and numerically. It is shown that the number, pattern, propagation distance, and spatial stability of MF can be controlled by a variable-aperture on-axis pinhole. The random MF pattern can be optimized to a deterministic pattern. In our numerical simulations, we configured double filaments to principlly simulate the experimental MF interactions. It is experimentally and numerically demonstrated that the pinhole can reduce the modulational instability of MF and is favorable for a more stable MF evolution. (c) 2007 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pulses of 177 fs and 1035 nm, with average power of 1.2 mW, have been generated directly from a passively mode-locked Yb-doped figure-of-eight fiber laser, with a nonlinear optical loop mirror for mode-locking and pairs of diffraction gratings for intracavity dispersion compensation. To our knowledge, these are the shortest pulses ever to come from a passively mode-locked Yb-doped figure-of-eight fiber laser. This represents a 5-fold reduction in pulse duration compared with that of previously reported passively mode-locked Yb-doped figure-of-eight fiber lasers. Stable pulse trains are produced at the fundamental repetition rate of the resonator, 24.0 MHz. (c) 2007 Elsevier B.V. All rights reserved.