282 resultados para Trigona spinipes
Resumo:
Deep-sea benthic foraminiferal faunas were studied from Sites 608 (depth 3534 m, 42°50'N, 23°05'W) and 610 (depth 2427 m, 53°13'N, 18°53'W). The sampling interval corresponded to 0.1 to 0.5 m.y. at Site 608 and in the sections of Site 610 from which core recovery was continuous. First and last appearances of benthic foraminiferal taxa are generally not coeval at the two sites, although the faunal patterns are similar and many species occur at both sites. Major periods of changes in the benthic faunas, as indicated by the numbers of first and last appearances and changes in relative abundances, occurred in the early Miocene (19.2-17 Ma), the middle Miocene (15.5-13.5 Ma), the late Miocene (7-5.5 Ma), and the Pliocene-Pleistocene (3.5-0.7 Ma). A period of minor changes in the middle to late Miocene (10-9 Ma) was recognized at Site 608 only. These periods of faunal changes can be correlated with periods of paleoceanographic changes: there was a period of sluggish circulation in the northeastern North Atlantic from 19.2 to 17 Ma, and the deep waters of the oceans probably cooled between 15.5 and 13.5 Ma, as indicated by an increase in delta18O values in benthic foraminiferal tests. The period between 10 and 9 Ma was probably characterized by relatively vigorous bottom-water circulation in the northeastern Atlantic, as indicated by the presence of a widespread reflector. The faunal change at 7 to 5.5 Ma corresponds in time with a worldwide change in delta13C values, and with the Messinian closing of the Mediterranean. The last and largest faunal changes correspond in time with the onset and intensification of Northern Hemisphere glaciation.
Resumo:
Contiene con pag. y sign. propia: All'Emin. e Rev. Signor Cardinale N. N.
Resumo:
ICCU
Resumo:
Almost half of the 4822 described beeflies in the world belong to the subfamily Anthracinae, with most of the diversity found in three cosmopolitan tribes: Villini, Anthracini, and Exoprosopini. The Australian Exoprosopini previously contained three genera, Ligyra Newman, Pseudopenthes Roberts and Exoprosopa Macquart. Pseudopenthes is an Australian endemic, with two species including Ps. hesperis, sp. nov. from Western Australia. Two new species of the exoprosopine Atrichochira Hesse, Atr. commoni, sp. nov. and Atr. paramonovi, sp. nov., are also described from Australia, extending the generic distribution from Africa. Cladistic analysis clarified the phylogenetic relationships between the recognised groups of the Exoprosopini and determined generic limits on a world scale. Inclusion of 18 Australian exoprosopines placed the Australian species in the context of the world fauna. The Exoprosopini contains six large groups. The basal group I contains species previously included in Exoprosopa to which the name Defilippia Lioy is applied. Group II contains Heteralonia Rondani, Atrichochira, Micomitra Bowden, Pseudopenthes, and Diatropomma Bowden. Colossoptera Hull is newly synonymised with Heteralonia. Group III is a paraphyletic assemblage of Pterobates Bezzi and Exoprosopa including the Australian Ex. sylvana ( Fabricius). Ligyra is paraphyletic, forming two well-separated clades. The African clade is described as Euligyra Lambkin, gen. nov., which, together with Litorhina Bezzi and Hyperalonia Rondani, form group IV. The Australian group V is true Ligyra. The remaining monophyletic lineage of exoprosopines, group VI, the Balaana-group of genera, shows evidence of an evolutionary radiation of beeflies in semi-arid Australia. Phylogenetic analysis of all 42 species of the Balaana-group of genera formed a basis for delimiting genera. Seven new genera are described by Lambkin & Yeates: Balaana, Kapua, Larrpana, Munjua, Muwarna, Palirika and Wurda. Four non-Australian species belong to Balaana. Thirty two new Australian species are described: Bal. abscondita, Bal. bicuspis, Bal. centrosa, Bal. gigantea, Bal. kingcascadensis, K. corusca, K. irwini, K. westralica, Lar. collessi, Lar. zwicki, Mun. erugata, Mun. lepidokingi, Mun. paralutea, Mun. trigona, Muw. vitreilinearis, Pa. anaxios, Pa. basilikos, Pa. blackdownensis, Pa. bouchardi, Pa. cyanea, Pa. danielsi, Pa. decora, Pa. viridula, Pa. whyalla, W. emu, W. impatientis, W. montebelloensis, W. norrisi, W. patrellia, W. skevingtoni, W. windorah, and W. wyperfeldensis. The following new combinations are proposed: from Colossoptera: Heteralonia latipennis (Brunetti); from Exoprosopa: Bal. grandis (Pallas), Bal. efflatounbeyi (Paramonov), Bal. latelimbata ( Bigot), Bal. obliquebifasciata ( Macquart), Bal. tamerlan (Portschinsky), Bal. onusta ( Walker), Def. busiris (Jaennicke), Def. efflatouni ( Bezzi), Def. eritreae (Greathead), Def. gentilis ( Bezzi), Def. luteicosta ( Bezzi), Def. minos (Meigen), Def. nigrifimbriata ( Hesse), Def. rubescens ( Bezzi), K. adelaidica ( Macquart), Lar. dimidiatipennis ( Bowden), Muw. stellifera ( Walker), and Pa. marginicollis ( Gray); from Ligyra: Eu. enderleini ( Paramonov), Eu. mars ( Bezzi), Eu. monacha (Klug), Eu. paris ( Bezzi), Eu. sisyphus ( Fabricius), and Eu. venus (Karsch).
Resumo:
Multivariate analysis was performed on percentages of 46 species of unstained deep-sea benthic foraminifera from 131 core-top to near-core-top samples (322-5013 m) from across the Indian Ocean. Faunal data are combined with GEOSECS geochemical data to investigate any relationship between benthic foraminifera (assemblages and species) and deep-sea properties. In general, benthic foraminifera show a good correlation to surface productivity, organic carbon flux to the sea floor, deep-sea oxygenation and, to a lesser extent, to bottom temperature, without correlation with the water depths. The foraminiferal census data combined with geochemical data has enabled the division of the Indian Ocean into two faunal provinces. Province A occupies the northwestern Indian Ocean (Arabian Sea region) where surface primary production has a major maximum during the summer monsoon season and a secondary maximum during winter monsoon season that leads to high organic flux to the seafloor, making the deep-sea one of the most oxygen-deficient regions in the world ocean, with a pronounced oxygen minimum zone (OMZ). This province is dominated by benthic foraminifera characteristic of low oxygen and high organic food flux including Uvigerina peregrina, Robulus nicobarensis, Bolivinita pseudopunctata, Bolivinita sp., Bulimina aculeata, Bulimina alazanensis, Ehrenbergina carinata and Cassidulina carinata. Province B covers southern, southeastern and eastern parts of the Indian Ocean and is dominated by Nuttallides umbonifera, Epistominella exigua, Globocassidulina subglobosa, Uvigerina proboscidea, Cibicides wuellerstorfi, Cassidulina laevigata, Pullenia bulloides, Pullenia osloensis, Pyrgo murrhina, Oridorsalis umbonatus, Gyroidinoides (= Gyroidina) soldanii and Gyroidinoides cf. gemma suggesting well-oxygenated, cold deep water with low (oligotrophic) and pulsed food supply.
Resumo:
Study of Recent abyssal benthic foraminifera from core-top samples in the eastern equatorial Indian Ocean has identified distinctive faunas whose distribution patterns reflect the major hydrographic features of the region. Above 3800 m, Indian Deep Water (IDW) is characterized by a diverse and evenly-distributed biofacies to which Globocassidulina subglobosa, Pyrgo spp., Uvigerina peregrina, and Eggerella bradyi are the major contributors. Nuttalides umbonifera and Epistominella exigua are associated with Indian Bottom Water (IBW) below 3800 m. Within the IBW fauna, N. umbonifera and E. exigua are characteristic of two biofacies with independent distribution patterns. Nuttalides umbonifera systematically increases in abundance with increasing water depth. The E. exigua biofacies reaches its greatest abundance in sediments on the eastern flank of the Ninetyeast Ridge and in the Wharton-Cocos Basin. The hydrographic transition between IDW and IBW coincides with the level of transition from waters supersaturated to waters undersaturated with respect to calcite and with the depth of the lysocline. Carbonate saturation levels, possibly combined with the effects of selective dissolution on the benthic foraminiferal populations, best explain the change in faunas across the IDW/IBW boundary and the bathymetric distribution pattern of N. umbonifera. The distribution of the E. exigua fauna cannot be explained with this model. Epistominella exigua is associated with the colder, more oxygenated IBW of the Wharton-Cocos Basin. The distribution of this biofacies on the eastern flank of the Ninetyeast Ridge agrees well with the calculated bathymetric position of the northward flowing deep boundary current which aerates the eastern basins of the Indian Ocean.
Resumo:
The distribution of deep-sea benthonic foraminifera in core top samples from the southwest Indian Ocean is examined. Principal component analysis reveals two major assemblages. One assemblages between 3600 and 4800-m water depth is dominated by Episominella umbonifera and is associated with cold (Theta = -0.3 to 0.8°C), low salinity (34.66 to 34.72 * 10**-3) Antarctic Bottom Water in the Crozet Basin, in fracture zones, and on the flanks of the Southwest Indian Ridge. A second assemblage, dominated by Planulina wuellerstorfi, Globocassidulina subglobasa, Astrononion echolsi and Pullenia bulloides, is between 1600 and 3800 m on the Crozet Plateau, Madagascar Ridge, Central Indian Ridge, and Southwest Indian Ridge and is associated with relatively warm (Theta = 0.8 to 2.6°C), high salinity (34.72 to 34.76 * 10**-3) North Atlantic Deep Water. The third principal component divides the P. wuellerstorfi assemblage into two subgroups. One is dominated by Epistominella exigua, P. bulloides, P. wuellerstorfi, and A. echolsi and a second is dominated by G. subglobosa. The distribution of the E. umbonifera assemblage and previous hydrographic studies suggest that AABW flows as a western boundary contour current in the Crozet Basin and penetrates fracture zones in the Southwest Indian Ridge between 55 and 57°E and near 66°E as it travels northward into the Madagascar and Mascarene basins. The faunal-water mass associations from the southeast Indian Ocean are compared; the most notable faunal difference is the absence of Uvigerina as a dominant taxon in the southwest Indian Ocean. A comparison of dissolved oxygen and Uvigerina data shows that oxygen is not a major influence upon the distribution of Uvigerina. A correlation analysis of the faunal data and water depth, potential temperature, in situ temperature, salinity, dissolved oxygen, and 1 - Omega, an index of calcium carbonate undersaturation, was carried out to determine the relationships between fauna and hydrography. The second principal component has a significant positive correlation at the 99.9% level with temperature and negative correlations with water depth and 1 - Omega. A general faunal-water mass correlation exists, but it is not possible to determine which variable controls the faunal distributions.
Resumo:
Benthic foraminiferal and calcareous nannofossil assemblages, as well as stable isotope data from the Campanian/Maastrichtian boundary interval (~71.4 to ~70.7 Ma) of the Kronsmoor section (North German Basin), were investigated in order to characterize changes in surface-water productivity and oxygen content at the seafloor and their link to climatic and paleoceanographic changes. A nutrient index based on calcareous nannofossils is derived for the high-latitude, epicontinental North German Basin, reflecting changes in surface-water productivity. Oxygen isotopes of well-preserved planktic foraminiferal specimens of Heterohelix globulosa reflect warmer surface-water temperatures in the lower part of the studied succession and a cooling of up to 2°C (0.5 per mil) in the upper part (after 71.1 Ma). For the lower and warmer part of the investigated succession, benthic foraminiferal assemblages and the calcareous nannofossils indicate well-oxygenated bottom waters and low-surface water productivity. In contrast, the upper part of the succession is characterized by cooler conditions, lower oxygen content at the seafloor and increasing surface-water productivity. It is proposed that the cooling phase starting at 71.1 Ma was accompanied by increasing surface-water mixing caused by westerly winds. As a consequence of mixing, nutrients were advected from sub-surface waters into the mixed layer, resulting in increased surface-water productivity and enhanced organic matter flux to the seafloor. We hypothesize that global sea-level fall during the earliest Maastrichtian (~71.3 Ma), indicated by decreasing carbon isotope values, may have led to a weaker water mass exchange through narrower gateways between the Boreal Realm and the open North Atlantic and Tethys oceans. Both the weaker water mass exchange and enhanced surface-water productivity may have led to slightly less ventilated bottom waters of the upper part of the studied section. Our micro-paleontological and stable isotopic approach indicates short-term (<100 kyr) changes in oxygen consumption at the seafloor and surface-water productivity across the homogeneous Boreal White Chalk succession of the North German Basin.
Resumo:
We investigated 88 surface sediment samples taken with a multiple corer from the southwestern South Atlantic Ocean for their live (Rose Bengal stained) and dead benthic foraminiferal content. Using Q-Mode Principal Component Analysis six live and six dead associations are differentiated. Live and dead association distributions correspond fairly well; differences are mainly caused by downslope transport and selective test destruction. In addition, four potential fossil associations are calculated from the dead data set after removal of non-fossilizable species. These potential fossil associations are expected to be useful for paleoceanographic reconstructions. Environments are described in detail for the live and potential fossil associations and for selected species. Along the upper Argentine continental slope strong bottom currents control the occurrence of live, dead and potential fossil Angulogerina angulosa associations. Here, particles of a high organic carbon flux rate remain suspended. Below this high energy environment live, dead and potential fossil Uvigerina peregrina dominated associations correlate with enhanced sediment organic carbon content and still high organic carbon flux rates. The live A. angulosa and U. peregrina associations correlate with high standing crops. Furthermore, live and dead Epistominella exigua-Nuttallides umbonifer associations were separated. Dominance of a Nuttallides umbonifer potential fossil association relates to coverage by Antarctic Bottom Water (AABW) and Lower Circumpolar Deep Water (LCDW), above the Calcite Compensation Depth (CCD). Three associations of mainly agglutinated foraminifera occur in sediments bathed mainly by AABW or CDW. A Reophax difflugiformis association was found in mud-rich and diatomaceous sediments. Below the CCD, a Psammosphaera fusca association occurs in coarse sediments poor in organic carbon while a Cribrostomoides subglobosus-Ammobaculites agglutinans association covers a more variable environmental range with mud contents exceeding 30%. One single Eggerella bradyi-Martinottiella communis association poor in both species and individuals remains from the agglutinated associations below the CCD if only preservable species are considered for calculation.
Resumo:
Benthic and selected planktic foraminifera and stable isotope records were determined in a piston core from the Gulf of Aden, NW Arabian Sea that spans the last 530 ka. The benthic foraminifera were grouped into four principal assemblages using Q-mode Principal Component Analyses. Comparison of each of these assemblages with the fauna of the nearby regions enabled us to identify their specific environmental requirements as a function of variability in food supply and strength of the oxygen minimum zone and by that to use them as indicators of surface water productivity. The benthic foraminiferal productivity indicators coupled with the record of Globigerina bulloides, a planktic foraminifer known to be sensitive to productivity changes in the region, all indicate higher productivity during glacial intervals and productivity similar to present or even reduced during interglacial stages. This trend is opposite to the productivity pattern related to the SW summer monsoon of the Arabian Sea and indicates the role of the NE winter monsoon on the productivity of the Gulf of Aden. A period of exceptionally enhanced productivity is recognized in the Gulf of Aden region between ~60 and 13 kyr indicating the intensification of the NE winter monsoon to its maximal activity. Contemporaneous indication of increased productivity in other parts of the Arabian Sea, unexplained so far by the SW summer monsoon variability, might be related to the intensification of the NE winter monsoon. Another prominent event of high productivity, second in its extent to the last glacial productivity event is recognized between 430 and 460 kyr. These two events seem to correspond to periods of similar orbital positioning of rather low precession (and eccentricity) amplitude for a relatively long period. Glacial boundary conditions seem to control to a large extent the NE winter monsoon variability as also indicated by the dominance of the 100 ka cycle in the investigated time series. Secondary in their importance are the 23 and 41 ka cycles which seem also to contribute to the NE monsoonal variability. Following the identification of productivity events related to the NE winter monsoon in the Gulf of Aden, it is possible now to extend this observation to other parts of the Arabian Sea and consider the contribution of this monsoonal system to the productivity fluctuations preserved in the sedimentary records.
Resumo:
Palmer Deep is a series of three glacially overdeepened basins on the Antarctic Peninsula shelf, ~20 km southwest of Anvers Island. Site 1098 (64°51.72'S, 64°12.48'W) was drilled in the shallowest basin, Basin I, at 1012 m water depth. The sediment recovered was primarily laminated, siliceous, biogenic, pelagic muds alternating with siliciclastic hemipelagic sediments (Barker, Camerlenghi, Acton, et al., 1999). Sedimentation rates of 0.1725 cm/yr in the upper 25 m and 0.7-0.80 cm/yr in the lower 25 m of the core have been estimated from 14C (Domack et al., 2001). The oldest datable sediments have an age of ~13 ka and were underlain by diamicton sediments of the last glacial maximum (Domack et al., 2001). The large-scale water-mass distribution and circulation in the vicinity of Palmer Deep is dominated by Circumpolar Deep Water (CDW) below 200 m (Hofmann et al., 1996). Palmer Deep is too far from the coast to be influenced by glacial meltwater and cold-tongue generation associated with it (Domack and Williams, 1990; Dixon and Domack, 1991). Circulation patterns in the Palmer Deep area are not well understood, but evidence suggests southward flow across Palmer Deep from Anvers Island to Renaud Island (Kock and Stein, 1978). The water south of Anvers Island is nearly open with loose pack ice from February through May. The area is covered with sea ice beginning in June (Gloersen et al., 1992; Leventer et al., 1996). Micropaleontologic data from the work of Leventer et al. (1996) on a 9-m piston core has revealed circulation and climate patterns for the past 3700 yr in the Palmer Deep. The benthic foraminifer assemblage is dominated by two taxa, Bulimina aculeata and Bolivina pseudopunctata, which are inversely related. High relative abundances of B. aculeata occur cyclically over a period of ~230 yr. The assemblage associated with high abundance of B. aculeata in Palmer Deep resembles that from the Bellingshausen shelf, which is associated with CDW. In addition to the faunal evidence, hydrographic data indicate incursions of CDW into Palmer Deep (Leventer et al., 1996). A distinctive diatom assemblage dominated by a single genus was associated with peaks in B. aculeata, whereas a few different assemblages were associated with lows in B. aculeata. Leventer et al. (1996) interpreted the variability in diatom assemblages as an indication of changes in productivity associated with changes in water column stability. Abelmann and Gowing (1997) studied the horizontal and vertical distributions of radiolarians in the Atlantic sector of the Southern Ocean. They show that the spatial distribution of radiolarian assemblages reflects hydrographic boundaries. In a transect from the subtropical Atlantic to polar Antarctic zones, radiolarians in the upper 1000 m of the water column occurred in distinct surface and deep-living assemblages related to water depth, temperature, salinity, and nutrient content. Living assemblages resembled those preserved in underlying surface sediments (Abelmann and Gowing, 1997). Circumantarctic coastal sediments from neritic environments contained a distinctive assemblage dominated by the Phormacantha hystrix/Plectacantha oikiskos group and Rhizoplegma boreale (Nishimura et al., 1997). Low diversity and species compositions distinguished the coastal sediments from the typical pelagic Antarctic assemblages. Factors that controlled the assemblages were water depth, proximity to the coast, occurrence of sea ice, and steepness of topography, rather than temperature and salinity. Nishimura et al. (1997) found a gradient of sorts from deep-water sites containing diverse assemblages typical of pelagic environments to coastal sites with low diversity assemblages dominated by P. hystrix/P. oikiskos group and R. boreale. In general, sites between these two extremes had increased proportions of the coastal assemblage with decreasing water depth (Nishimura et al., 1997). At a site near Hole 1098 (GC905), they showed that the relative abundance of the coastal assemblage increased downcore (Nishimura et al., 1997). The purpose of the research presented here was to make a cursory investigation into the radiolarian assemblages as possible paleoenvironmental indicators.
Resumo:
Este trabalho foi desenvolvido com a finalidade de apresentar algumas considerações sobre a biologia reprodutiva de Clidemia Iurta, Conclui-se que: I ) A ântese tem início em torno das 18:00 h e termina por volta das 09:00 h do dia seguinte; 2) Esta é uma espécie preferencialmente alógama, porém não apresenta auto-incompatibilidade genética; 3) A polinização parece depender de agentes polinizadores, principalmente abelhas das famílias Apidae (Bambus, Melipona, Euglossa, Trigona) e Halictidae.