373 resultados para Tort
Resumo:
TORT, A. B. L. ; SCHEFFER-TEIXEIRA, R ; Souza, B.C. ; DRAGUHN, A. ; BRANKACK, J. . Theta-associated high-frequency oscillations (110-160 Hz) in the hippocampus and neocortex. Progress in Neurobiology , v. 100, p. 1-14, 2013.
Resumo:
TORRES, F ; FILHO, M.S. ; ANTUNES, C. ; KALININE, E. ; ANTONIOLLI, E. ; PORTELA, Luis Valmor ; SOUZA, Diogo Onofre ; TORT, A. B. L. . Electrophysiological effects of guanosine and MK-801 in a quinolinic acid-induced seizure model. Experimental Neurology , v. 221, p. 296-306, 2010
Resumo:
Journal impact factors have become an important criterion to judge the quality of scientific publications over the years, influencing the evaluation of institutions and individual researchers worldwide. However, they are also subject to a number of criticisms. Here we point out that the calculation of a journal’s impact factor is mainly based on the date of publication of its articles in print form, despite the fact that most journals now make their articles available online before that date. We analyze 61 neuroscience journals and show that delays between online and print publication of articles increased steadily over the last decade. Importantly, such a practice varies widely among journals, as some of them have no delays, while for others this period is longer than a year. Using a modified impact factor based on online rather than print publication dates, we demonstrate that online-to-print delays can artificially raise a journal’s impact factor, and that this inflation is greater for longer publication lags. We also show that correcting the effect of publication delay on impact factors changes journal rankings based on this metric. We thus suggest that indexing of articles in citation databases and calculation of citation metrics should be based on the date of an article’s online appearance, rather than on that of its publication in print.
Resumo:
Recent studies show that higher order oscillatory interactions such as cross-frequency coupling are important for brain functions that are impaired in schizophrenia, including perception, attention and memory. Here we investigated the dynamics of oscillatory coupling in the hippocampus of awake rats upon NMDA receptor blockade by ketamine, a pharmacological model of schizophrenia. Ketamine (25, 50 and 75 mg/kg i.p.) increased gamma and high-frequency oscillations (HFO) in all depths of the CA1-dentate axis, while theta power changes depended on anatomical location and were independent of a transient increase of delta oscillations. Phase coherence of gamma and HFO increased across hippocampal layers. Phase-amplitude coupling between theta and fast oscillations was markedly altered in a dose-dependent manner: ketamine increased hippocampal theta-HFO coupling at all doses, while theta-gamma coupling increased at the lowest dose and was disrupted at the highest dose. Our results demonstrate that ketamine alters network interactions that underlie cognitively relevant theta-gamma coupling.
Resumo:
Recent progress in the technology for single unit recordings has given the neuroscientific community theopportunity to record the spiking activity of large neuronal populations. At the same pace, statistical andmathematical tools were developed to deal with high-dimensional datasets typical of such recordings.A major line of research investigates the functional role of subsets of neurons with significant co-firingbehavior: the Hebbian cell assemblies. Here we review three linear methods for the detection of cellassemblies in large neuronal populations that rely on principal and independent component analysis.Based on their performance in spike train simulations, we propose a modified framework that incorpo-rates multiple features of these previous methods. We apply the new framework to actual single unitrecordings and show the existence of cell assemblies in the rat hippocampus, which typically oscillate attheta frequencies and couple to different phases of the underlying field rhythm
Resumo:
The processing of spatial and mnemonic information is believed to depend on hippocampal theta oscillations (5–12 Hz). However, in rats both the power and the frequency of the theta rhythm are modulated by locomotor activity, which is a major confounding factor when estimating its cognitive correlates. Previous studies have suggested that hippocampal theta oscillations support decision-making processes. In this study, we investigated to what extent spatial decision making modulates hippocampal theta oscillations when controlling for variations in locomotion speed. We recorded local field potentials from the CA1 region of rats while animals had to choose one arm to enter for reward (goal) in a four-arm radial maze. We observed prominent theta oscillations during the decision-making period of the task, which occurred in the center of the maze before animals deliberately ran through an arm toward goal location. In speed-controlled analyses, theta power and frequency were higher during the decision period when compared to either an intertrial delay period (also at the maze center), or to the period of running toward goal location. In addition, theta activity was higher during decision periods preceding correct choices than during decision periods preceding incorrect choices. Altogether, our data support a cognitive function for the hippocampal theta rhythm in spatial decision making
Resumo:
The morphogen Sonic Hedgehog (SHH) plays a critical role in the development of different tissues. In the central nervous system, SHH is well known to contribute to the patterning of the spinal cord and separation of the brain hemispheres. In addition, it has recently been shown that SHH signaling also contributes to the patterning of the telencephalon and establishment of adult neurogenic niches. In this work, we investigated whether SHH signaling influences the behavior of neural progenitors isolated from the dorsal telencephalon, which generate excitatory neurons and macroglial cells in vitro. We observed that SHH increases proliferation of cortical progenitors and generation of astrocytes, whereas blocking SHH signaling with cyclopamine has opposite effects. In both cases, generation of neurons did not seem to be affected. However, cell survival was broadly affected by blockade of SHH signaling. SHH effects were related to three different cell phenomena: mode of cell division, cell cycle length and cell growth. Together, our data in vitro demonstrate that SHH signaling controls cell behaviors that are important for proliferation of cerebral cortex progenitors, as well as differentiation and survival of neurons and astroglial cells.
Resumo:
Different types of network oscillations occur in different behavioral, cognitive, or vigilance states. The rodent hippocampus expresses prominentoscillations atfrequencies between 4 and 12Hz,which are superimposed by phase-coupledoscillations (30 –100Hz).These patterns entrain multineuronal activity over large distances and have been implicated in sensory information processing and memory formation. Here we report a new type of oscillation at near- frequencies (2– 4 Hz) in the hippocampus of urethane-anesthetized mice. The rhythm is highly coherent with nasal respiration and with rhythmic field potentials in the olfactory bulb: hence, we called it hippocampal respiration-induced oscillations. Despite the similarity in frequency range, several features distinguish this pattern from locally generatedoscillations: hippocampal respiration-induced oscillations have a unique laminar amplitude profile, are resistant to atropine, couple differentlytooscillations, and are abolished when nasal airflow is bypassed bytracheotomy. Hippocampal neurons are entrained by both the respiration-induced rhythm and concurrent oscillations, suggesting a direct interaction between endogenous activity in the hippocampus and nasal respiratory inputs. Our results demonstrate that nasal respiration strongly modulates hippocampal network activity in mice, providing a long-range synchronizing signal between olfactory and hippocampal networks.
Resumo:
Hebb proposed that synapses between neurons that fire synchronously are strengthened, forming cell assemblies and phase sequences. The former, on a shorter scale, are ensembles of synchronized cells that function transiently as a closed processing system; the latter, on a larger scale, correspond to the sequential activation of cell assemblies able to represent percepts and behaviors. Nowadays, the recording of large neuronal populations allows for the detection of multiple cell assemblies. Within Hebb's theory, the next logical step is the analysis of phase sequences. Here we detected phase sequences as consecutive assembly activation patterns, and then analyzed their graph attributes in relation to behavior. We investigated action potentials recorded from the adult rat hippocampus and neocortex before, during and after novel object exploration (experimental periods). Within assembly graphs, each assembly corresponded to a node, and each edge corresponded to the temporal sequence of consecutive node activations. The sum of all assembly activations was proportional to firing rates, but the activity of individual assemblies was not. Assembly repertoire was stable across experimental periods, suggesting that novel experience does not create new assemblies in the adult rat. Assembly graph attributes, on the other hand, varied significantly across behavioral states and experimental periods, and were separable enough to correctly classify experimental periods (Naïve Bayes classifier; maximum AUROCs ranging from 0.55 to 0.99) and behavioral states (waking, slow wave sleep, and rapid eye movement sleep; maximum AUROCs ranging from 0.64 to 0.98). Our findings agree with Hebb's view that assemblies correspond to primitive building blocks of representation, nearly unchanged in the adult, while phase sequences are labile across behavioral states and change after novel experience. The results are compatible with a role for phase sequences in behavior and cognition.
Resumo:
It has been recently shownthat localfield potentials (LFPs)fromthe auditory and visual cortices carry information about sensory stimuli, but whether this is a universal property of sensory cortices remains to be determined. Moreover, little is known about the temporal dynamics of sensory information contained in LFPs following stimulus onset. Here we investigated the time course of the amount of stimulus information in LFPs and spikes from the gustatory cortex of awake rats subjected to tastants and water delivery on the tongue. We found that the phase and amplitude of multiple LFP frequencies carry information about stimuli, which have specific time courses after stimulus delivery. The information carried by LFP phase and amplitude was independent within frequency bands, since the joint information exhibited neither synergy nor redundancy. Tastant information in LFPs was also independent and had a different time course from the information carried by spikes. These findings support the hypothesis that the brain uses different frequency channels to dynamically code for multiple features of a stimulus.
Resumo:
The present dissertation, elaborated is based on the deductive method, through the use of the General Theory of Resources concepts, by the main types of judgments existing in the Code of Civil Procedure, the interlocutory judgment and sentence, as well as the features and effects that challenge these decisions, we sought to identify on this theme one of the greatest evils facing the justice system in the world, which is the processing delays. This slowness in adjudication affects seriously the principle of effectiveness, one of the postulates of procedural law and society as a whole. Thus, the use of tort serves to fight the interlocutory decision and appeal which challenges the judge`s ruling. It is a resource for excellence in appellate system as it meets with the most awaited decision of the process. In weighing the importance of the appeal that seeks to oppose the court decision today by the numerous reforms that the procedural system has been through, it has ended up to transform the process ineffective or inconsistent, for it is much easier to have efficacy in a interlocutory decision for preliminary injunction than by judgment on the merits of the judge. This is due to the prevision of the resources and their effect to those decisions. That is, the interlocutory decision involves interlocutory appeal only in the devolved effect, allowing its provisional execution, and the sentence has as recourse to appeal the double effect, remanding and suspension, which necessarily prevents its provisional execution. But it undeniably shows a paradox, because as to give effect to a measure that is based on a mere probability by a summary cognition, partial and superficial, and stop it on a decision by a court that is closer to the truth and sure, for a full and depleting cognition? It is seriously affect the principle of effectiveness. Therefore, starting from this ineffectiveness, sought to defend the solution of this problem with the approval of the bill n. º 3.605/2004 or the new Code of Civil Procedure project that modifies the general rule the effects of appeal. That is, remanding and suspensive, as to merely remanding effect to and thereby enable the provisional execution of the judgment of the court of the first degree of jurisdiction, giving effectiveness and enhancing the decision of the magistrate, making a fair distribution of time in the process and better guaranteed principle of access to justice
Resumo:
Brain oscillation are not completely independent, but able to interact with each other through cross-frequency coupling (CFC) in at least four different ways: power-to-power, phase-to-phase, phase-to-frequency and phase-to-power. Recent evidence suggests that not only the rhythms per se, but also their interactions are involved in the execution of cognitive tasks, mainly those requiring selective attention, information flow and memory consolidation. It was recently proposed that fast gamma oscillations (60 150 Hz) convey spatial information from the medial entorhinal cortex to the CA1 region of the hippocampus by means of theta (4-12 Hz) phase coupling. Despite these findings, however, little is known about general characteristics of CFCs in several brain regions. In this work we recorded local field potentials using multielectrode arrays aimed at the CA1 region of the dorsal hippocampus for chronic recording. Cross-frequency coupling was evaluated by using comodulogram analysis, a CFC tool recently developted (Tort et al. 2008, Tort et al. 2010). All data analyses were performed using MATLAB (MathWorks Inc). Here we describe two functionally distinct oscillations within the fast gamma frequency range, both coupled to the theta rhythm during active exploration and REM sleep: an oscillation with peak activity at ~80 Hz, and a faster oscillation centered at ~140 Hz. The two oscillations are differentially modulated by the phase of theta depending on the CA1 layer; theta-80 Hz coupling is strongest at stratum lacunosum-moleculare, while theta-140 Hz coupling is strongest at stratum oriens-alveus. This laminar profile suggests that the ~80 Hz oscillation originates from entorhinal cortex inputs to deeper CA1 layers, while the ~140 Hz oscillation reflects CA1 activity in superficial layers. We further show that the ~140 Hz oscillation differs from sharp-wave associated ripple oscillations in several key characteristics. Our results demonstrate the existence of novel theta-associated high-frequency oscillations, and suggest a redefinition of fast gamma oscillations
Resumo:
Processing in the visual system starts in the retina. Its complex network of cells with different properties enables for parallel encoding and transmission of visual information to the lateral geniculate nucleus (LGN) and to the cortex. In the retina, it has been shown that responses are often accompanied by fast synchronous oscillations (30 - 90 Hz) in a stimulus-dependent manner. Studies in the frog, rabbit, cat and monkey, have shown strong oscillatory responses to large stimuli which probably encode global stimulus properties, such as size and continuity (Neuenschwander and Singer, 1996; Ishikane et al., 2005). Moreover, simultaneous recordings from different levels in the visual system have demonstrated that the oscillatory patterning of retinal ganglion cell responses are transmitted to the cortex via the LGN (Castelo-Branco et al., 1998). Overall these results suggest that feedforward synchronous oscillations contribute to visual encoding. In the present study on the LGN of the anesthetized cat, we further investigate the role of retinal oscillations in visual processing by applying complex stimuli, such as natural visual scenes, light spots of varying size and contrast, and flickering checkerboards. This is a necessary step for understanding encoding mechanisms in more naturalistic conditions, as currently most data on retinal oscillations have been limited to simple, flashed and stationary stimuli. Correlation analysis of spiking responses confirmed previous results showing that oscillatory responses in the retina (observed here from the LGN responses) largely depend on the size and stationarity of the stimulus. For natural scenes (gray-level and binary movies) oscillations appeared only for brief moments probably when receptive fields were dominated by large continuous, flat-contrast surfaces. Moreover, oscillatory responses to a circle stimulus could be broken with an annular mask indicating that synchronization arises from relatively local interactions among populations of activated cells in the retina. A surprising finding in this study was that retinal oscillations are highly dependent on halothane anesthesia levels. In the absence of halothane, oscillatory activity vanished independent of the characteristics of the stimuli. The same results were obtained for isoflurane, which has similar pharmacological properties. These new and unexpected findings question whether feedfoward oscillations in the early visual system are simply due to an imbalance between excitation and inhibition in the retinal networks generated by the halogenated anesthetics. Further studies in awake behaving animals are necessary to extend these conclusions
Resumo:
Epilepsies are neurological disorders characterized by recurrent and spontaneous seizures due to an abnormal electric activity in a brain network. The mesial temporal lobe epilepsy (MTLE) is the most prevalent type of epilepsy in adulthood, and it occurs frequently in association with hippocampal sclerosis. Unfortunately, not all patients benefit from pharmacological treatment (drug-resistant patients), and therefore become candidates for surgery, a procedure of high complexity and cost. Nowadays, the most common surgery is the anterior temporal lobectomy with selective amygdalohippocampectomy, a procedure standardized by anatomical markers. However, part of patients still present seizure after the procedure. Then, to increase the efficiency of this kind of procedure, it is fundamental to know the epileptic human brain in order to create new tools for auxiliary an individualized surgery procedure. The aim of this work was to identify and quantify the occurrence of epilepticform activity -such as interictal spikes (IS) and high frequency oscillations (HFO) - in electrocorticographic (ECoG) signals acutely recorded during the surgery procedure in drug-resistant patients with MTLE. The ECoG recording (32 channels at sample rate of 1 kHz) was performed in the surface of temporal lobe in three moments: without any cortical resection, after anterior temporal lobectomy and after amygdalohippocampectomy (mean duration of each record: 10 min; N = 17 patients; ethic approval #1038/03 in Research Ethic Committee of Federal University of São Paulo). The occurrence of IS and HFO was quantified automatically by MATLAB routines and validated manually. The events rate (number of events/channels) in each recording time was correlated with seizure control outcome. In 8 hours and 40 minutes of record, we identified 36,858 IS and 1.756 HFO. We observed that seizure-free outcome patients had more HFO rate before the resection than non-seizure free, however do not differentiate in relation of frequency, morphology and distribution of IS. The HFO rate in the first record was better than IS rate on prediction of seizure-free patients (IS: AUC = 57%, Sens = 70%, Spec = 71% vs HFO: AUC = 77%, Sens = 100%, Spec = 70%). We observed the same for the difference of the rate of pre and post-resection (IS: AUC = 54%, Sens = 60%, Spec = 71%; vs HFO: AUC = 84%, Sens = 100%, Spec = 80%). In this case, the algorithm identifies all seizure-free patients (N = 7) with two false positives. To conclude, we observed that the IS and HFO can be found in intra-operative ECoG record, despite the anesthesia and the short time of record. The possibility to classify the patients before any cortical resection suggest that ECoG can be important to decide the use of adjuvant pharmacological treatment or to change for tailored resection procedure. The mechanism responsible for this effect is still unknown, thus more studies are necessary to clarify the processes related to it
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior