609 resultados para Thermochemical biofuels


Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este documento se escribe el caso de Biomax, se hace un análisis de la regulación del sector de distribución de combustibles en Colombia, de Hacinamiento Cuantitativo, de erosión estratégica y de la productividad. También se hace una aproximación a la identificación de los comportamientos asociados al liderazgo transformacional y/o transaccional en la conducta del presidente de la compañía. Se presenta una reseña de la historia de la compañía y su modelo de negocio. Finalmente se encuentra que hay una inclinación en el presidente de la compañía hacia un estilo de liderazgo transformacional que puede estar relacionado con los logros que la compañía ha alcanzado en un corto periodo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el trabajo de grado se realiza un analisis del mercado internacional de biocombustibles y como este ha afectado a la seguridad alimentaria de Colombia teniendo en cuenta la normativa del país en el tema de los biocombustibles y el estado actual del debate a nivel mundial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La búsqueda de los Estados por mitigar su dependencia energética de las fuentes fósiles, ha traído consigo la búsqueda de energías alternativas, desencadenando en el uso y producción de biocombustibles. A su vez, la producción de estos últimos a través de cultivos transgénicos ha ido cobrando importancia en el escenario internacional. Esta opción se ha considerado como una salida al dilema de utilización de tierras "Biocombustible vs. Alimentos". En este contexto, el caso de Argentina, como uno de los mayores productores de cultivos transgénicos del mundo, entre los cuales se destaca la soja, se analiza en esta investigación por ser importante para determinar cuál es el impacto de los biocombustibles producidos a través de cultivos transgénicos en la seguridad alimentaria de la población.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El interés del presente estudio de caso consiste en analizar las ventajas comparativas y competitivas de Colombia en la producción de Biocombustibles, teniendo en cuenta su participación en la Iniciativa Plan Puebla Panamá y la influencia de Brasil como principal productor de biocombustibles. Empleando conceptos como competitividad, cooperación técnica e integración regional, a lo largo del desarrollo del texto, se busca demostrar o refutar que a través de la participación en la Iniciativa Plan Puebla Panamá, Colombia generó experiencia y capacidad de producción de biocombustibles, especialmente de biodiesel, elemento que le permite ser competitivo en el mercado regional y tener ventajas en comparación con Brasil.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is predicated on the assumption that palm oil is an “environmentally friendly” fuel feedstock. Here we show, using measurements and models, that oil palm plantations in Malaysia directly emit more oxides of nitrogen and volatile organic compounds than rainforest. These compounds lead to the production of ground-level ozone (O3), an air pollutant that damages human health, plants, and materials, reduces crop productivity, and has effects on the Earth's climate. Our measurements show that, at present, O3 concentrations do not differ significantly over rainforest and adjacent oil palm plantation landscapes. However, our model calculations predict that if concentrations of oxides of nitrogen in Borneo are allowed to reach those currently seen over rural North America and Europe, ground-level O3 concentrations will reach 100 parts per billion (109) volume (ppbv) and exceed levels known to be harmful to human health. Our study provides an early warning of the urgent need to develop policies that manage nitrogen emissions if the detrimental effects of palm oil production on air quality and climate are to be avoided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper outlines EU policy on bioenergy, including biofuels, in the context of its policy initiatives to promote renewable energy to combat greenhouse gas emissions and climate change. The EU's Member States are responsible for implementing EU policy: thus, the UK's Renewables Obligation on electricity suppliers and its Renewable Transport Fuel Obligation and road-fuel tax rebates are examined. It is unlikely that EU policy is in conflict with the WTO Agreement on Agriculture or that on Subsidies and Countervailing Measures, but its provisions on environmental sustainability criteria could be problematic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fast-growing poplar trees may in future be used as a source of renewable energy for heat, electricity and biofuels such as bioethanol. Water use in Populus x euramericana (clone I214), following long-term exposure to elevated CO2 in the POPFACE (poplar free-air carbon dioxide enrichment) experiment, is quantified here. Stomatal conductance was measured and, during two measurement campaigns made before and after coppicing, whole-tree water use was determined using heat-balance sap-flow gauges, first validated using eddy covariance measurements of latent heat flux. Water use was determined by the balance between leaf-level reductions in stomatal conductance and tree-level stimulations in transpiration. Reductions in stomatal conductance were found that varied between 16 and 39% relative to ambient air. Whole-tree sap flow was increased in plants growing under elevated CO2, on average, by 12 and 23%, respectively, in the first and in the second measurement campaigns. These results suggest that future CO2 concentrations may result in an increase in seasonal water use in fast-growing, short-rotation Populus plantations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is predicated on the assumption that palm oil is an "environmentally friendly'' fuel feedstock. Here we show, using measurements and models, that oil palm plantations in Malaysia directly emit more oxides of nitrogen and volatile organic compounds than rainforest. These compounds lead to the production of ground-level ozone (O-3), an air pollutant that damages human health, plants, and materials, reduces crop productivity, and has effects on the Earth's climate. Our measurements show that, at present, O-3 concentrations do not differ significantly over rainforest and adjacent oil palm plantation landscapes. However, our model calculations predict that if concentrations of oxides of nitrogen in Borneo are allowed to reach those currently seen over rural North America and Europe, ground-level O-3 concentrations will reach 100 parts per billion (10(9)) volume (ppbv) and exceed levels known to be harmful to human health. Our study provides an early warning of the urgent need to develop policies that manage nitrogen emissions if the detrimental effects of palm oil production on air quality and climate are to be avoided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management. Methodology/Main findings We maintained full size poplar short rotation coppice (SRC) systems under both current ambient and future elevated [CO2] (550 ppm) and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e. 2 year cycles instead of 3 year cycles) will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance. Conclusions/significance Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Of the technologies currently available for producing energy from renewable sources in the British climate all except one depend on a single ingredient, namely land. Therefore other than offshore wind generation, which has been slow and expensive to establish, renewables have had to be derived almost entirely from the land, whether as sites for turbines or areas on which to grow feedstocks for biomass and biofuels. Of these, only wind turbines have been developed in any number while economic conditions have until now been unfavourable for biomass and biofuel. The UK is unlikely to meet its present targets under the Kyoto agreement, due to a mixture of limited funding and problems of policy. Peter Prag examines the present position and the potential outlook.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of biofuels has been one of the most visible and controversial manifestations of the use of biomass for energy. Biofuels policies in the EU, US and Brazil have been particularly important for the development of the industry in these three important markets. All three have used a variety of measures, including consumption or use mandates, tax incentives and import protection to promote the production and use of biofuels. Despite this, it is uncertain whether the EU will achieve its objective of a 10 per cent share for renewables in transport fuels by 2020. The US is also running into difficulties in meeting consumption mandates for biofuels. Questions are being raised about the continuation of tax credits and import protection. Brazil has liberalised its domestic ethanol market and adopted a more market-oriented approach to biofuels policy, but the management of domestic petroleum prices and the inter-relationship between the sugar market and ethanol production are important factors affecting domestic consumption and exports. In both the EU and the US an ongoing debate about the benefits of reliance on biofuels derived from food crops and concern about the efficacy of current biofuels policies may put their future in doubt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many reasons are being advanced for the current ‘food crisis’ including financial speculation,increased demand for grains, export bans on selected foodstuffs, inadequate grain stocks, higher oil prices, poor harvests and the use of crop lands for the production of biofuels. This paper reviews the present knowledge of recorded impacts of climate change and variability on crop production, in order to estimate its contribution to the current situation. Many studies demonstrate increased regional temperatures over the last 40 years (often through greater increases in minimum rather than maximum temperatures), but effects on crop yields are mixed. Distinguishing climate effects from changes in yield resulting from improved crop management and genotypes is difficult, but phenological changes affecting sowing, maturity and disease incidence are emerging. Anthropogenic factors appear to be a significant contributory factor to the observed decline in rainfall in southwestern and southeastern Australia, which reduced tradable wheat grain during 2007. Indirect effects of climate change through actions to mitigate or adapt to anticipated changes in climate are also evident. The amount of land diverted from crop production to biofuel production is small but has had a disproportionate effect on tradable grains from the USA. Adaptation of crop production practices and other components of the food system contributing to food security in response to variable and changing climates have occurred, but those households without adequate livelihoods are most in danger of becoming food insecure. Overall, we conclude that changing climate is a small contributor to the current food crisis but cannot be ignored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Black carbon aerosol plays a unique and important role in Earth’s climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr�-1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m�-2 with 90% uncertainty bounds of (+0.08, +1.27)Wm�-2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m�-2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m�-2 with 90% uncertainty bounds of +0.17 to +2.1 W m�-2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m�-2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (�-0.50 to +1.08) W m-�2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (�-0.06 W m�-2 with 90% uncertainty bounds of �-1.45 to +1.29 W m�-2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.