955 resultados para Surface Effect Ship


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Thirty blocks (5×5×4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR, VITA) were fabricated according to the manufacturer's instructions and duplicated in resin composite. The specimens were polished and assigned to one of the following three treatment conditions (n=10): (1) Airborne particle abrasion with 110 μm Al2O3 particles + silanization, (2) Silica coating with 110 μm SiOx particles (Rocatec Pre and Plus, 3M ESPE) + silanization, (3) Silica coating with 30 μm SiOx particles (CoJet, 3M ESPE) + silanization. The ceramic-composite blocks were cemented with the resin cement (Panavia F) and stored at 37 °C in distilled water for 7 days prior to bond tests. The blocks were cut under coolant water to produce bar specimens with a bonding area of approximately 0.6 mm2. The bond strength tests were performed in a universal testing machine (cross-head speed: 1 mm/min). The mean bond strengths of the specimens of each block were statistically analyzed using ANOVA and Tukey's test (α≤0.05). Silica coating with silanization either using 110 μm SiOx or 30 μm SiOx particles increased the bond strength of the resin cement (24.6±2.7 MPa and 26.7±2.4 MPa, respectively) to the zirconia-based ceramic significantly compared to that of airborne particle abrasion with 110-μm Al2O3 (20.5±3.8 MPa) (ANOVA, P<0.05). Conditioning the INC-ZR ceramic surfaces with silica coating and silanization using either chairside or laboratory devices provided higher bond strengths of the resin cement than with airborne particle abrasion using 110 μm Al2O3. © 2005 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Acid etching promotes microporosities on enamel surface, which provide a better bonding surface to adhesive materials. The purpose of this study was to comparatively analyze the microstructure of enamel surface after etching with 37% phosphoric acid or with two self-etching primers, Non-rinse conditioner (NRC) and Clearfil SE Bond (CSEB) using scanning electron microscopy. Thirty sound premolars were divided into 3 groups with ten teeth each: Group 1: the buccal surface was etched with 37% phosphoric acid for 15 seconds; Group 2: the buccal surface was etched with NRC for 20 seconds; Group 3: the buccal surface was etched with CSEB for 20 seconds. Teeth from Group 1 were rinsed with water; teeth from all groups were air-dried for 15 seconds. After that, all specimens were processed for scanning electron microscopy and analyzed in a Jeol 6100 SEM. The results showed deeper etching when the enamel surface was etched with 37% phosphoric acid, followed by NRC and CSEB. It is concluded that 37% phosphoric acid is still the best agent for a most effective enamel etching.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: To test the bond strength between a quartz-fiber-reinforced composite post (FRC) and a resin cement. The null hypothesis was that the bond strength can be increased by using a chairside tribochemical silica-coating system. Materials and Methods: Thirty quartz-FRCs (Light-Post) were divided into 3 groups according to the post surface treatment: G1) Conditioning with 32% phosphoric acid (1 min), applying a silane coupling agent; G2) etching with 10% hydrofluoric acid (1 min), silane application; G3) chairside tribochemical silica coating method (CoJet System): air abrasion with 30-μ SiO x-modified Al2O3 particles, silane application. Thereafter, the posts were cemented into a cylinder (5 mm diameter, 15 mm height) with a resin cement (Duo-Link). After cementation, the specimens were stored in distilled water (37°C/24 h) and sectioned along the x and y axes with a diamond wheel under cooling (Lab-cut 1010) to create nontrimmed bar specimens. Each specimen was attached with cyanoacrylate to an apparatus adapted for the microtensile test. Microtensile testing was conducted on a universal testing machine (1 mm/min). The data obtained were submitted to the one-way ANOVA and Tukey test (α = 0.05). Results: A significant influence of the conditioning methods was observed (p < 0.0001). The bond strength of G3 (15.14 ± 3.3) was significantly higher than the bond strengths of G1 (6.9 ± 2.3) and G2 (12.60 ± 2.8) (p = 0.000106 and p = 0.002631, respectively). Notwithstanding the groups, all the tested specimens showed adhesive failure between the resin cement and FRC. Conclusion: The chairside tribochemical system yielded the highest bond strength between resin cement and quartz-fiber post. The null hypothesis was accepted (p < 0.0001).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effects of dentin surface treatments on the tensile bond strength (TBS) of the self-etching primer Clearfil SE Bond (CSE) and the one-step self-etching One-Up Bond F (OUB). The exposed flat dentin surfaces of twenty-four sound third molars were prepared with diamond bur at high-speed, carbide bur at low-speed or wet ground with #600 grit SiC paper. The adhesive systems were applied to the dentin surfaces and light-cured according to the manufacturers' instructions. A 6-mm high composite crown was incrementally built-up and each increment was light-cured for 40 seconds. After being stored in water (37°C/24 h), the samples were serially sectioned parallel to the long axis, forming beams (n = 20) with a cross-sectional area of approximately 0.8 mm 2. The specimens were tested in a Universal Testing Machine at 0.5 mm/min. The cross-sectional area was measured and the results (MPa) were analyzed by two-way ANOVA and Tukey Test (p < 0.05). Overall, the groups treated with CSE exhibited the highest TBS for all surface treatments. Dentin surfaces prepared with carbide bur at low speed reduced TBS in the CSE group; however, OUB was not affected by surface treatments. The effect of surface abrasive methods on TBS was material-dependent.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (In-Ceram Zirconia) ceramics. Materials and Methods: Ten blocks (5 ×6 × 8 mm) of In-Ceram Alumina (AL), In-Ceram Zirconia (ZR), and Procera (PR) ceramics were fabricated according to each manufacturer's instructions and duplicated in composite. The specimens were assigned to one of the two following treatment conditions: (1) airborne particle abrasion with 110-μm Al2O3 particles + silanization, (2) silica coating with 30 μm SiOx particles (CoJet, 3M ESPE) + silanization. Each ceramic block was duplicated in composite resin (W3D-Master, Wilcos, Petrópolis, RJ, Brazil) using a mold made out of silicon impression material. Composite resin layers were incrementally condensed into the mold to fill up the mold and each layer was light polymerized for 40 s. The composite blocks were bonded to the surface-conditioned ceramic blocks using a resin cement system (Panavia F, Kuraray, Okayama, Japan). One composite resin block was fabricated for each ceramic block. The ceramic-composite was stored at 37°C in distilled water for 7 days prior to bond tests. The blocks were cut under water cooling to produce bar specimens (n = 30) with a bonding area of approximately 0.6 mm2. The bond strength tests were performed in a universal testing machine (crosshead speed: 1 mm/min). Bond strength values were statistically analyzed using two-way ANOVA and Tukey's test (≤ 0.05). Results: Silica coating with silanization increased the bond strength significantly for all three high-strength ceramics (18.5 to 31.2 MPa) compared to that of airborne particle abrasion with 110-μm Al2O3 (12.7-17.3 MPa) (ANOVA, p < 0.05). PR exhibited the lowest bond strengths after both Al2O3 and silica coating (12.7 and 18.5 MPa, respectively). Conclusion: Conditioning the high-strength ceramic surfaces with silica coating and silanization provided higher bond strengths of the resin cement than with airborne particle abrasion with 110-μm Al2O3 and silanization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: To assess the effect of the composite surface conditioning on the microtensile bond strength of a resin cement to a composite used for inlay/onlay restorations. Materials and Methods: Forty-two blocks (6 × 6 × 4 mm) of a microfilled composite (Vita VMLC) were produced and divided into 3 groups (N = 14) by composite surface conditioning methods: Gr1 - etching with 37% phosphoric acid, washing, drying, silanization; Gr2 - air abrasion with 50-l̀m Al2O3 particles, silanization; Gr3 - chairside tribochemical silica coating (CoJet System), silanization. Single-Bond (one-step adhesive) was applied on the conditioned surfaces and the two resin blocks treated with the same method were cemented using RelyX ARC (dual-curing resin cement). The specimens were stored for 7 days in water at 37°C and then sectioned to produce nontrimmed beam samples, which were submitted to microtensile bond strength testing (μTBS). For statistical analysis (one-way ANOVA and Tukey's test, · = 0.05), the means of the beam samples from each luted specimen were calculated (n = 7). Results: μTBS values (MPa) of Gr2 (62.0 ± 3.9a) and Gr3 (60.5 ± 7.9a) were statistically similar to each other and higher than Gr1 (38.2 ± 8.9b). The analysis of the fractured surfaces revealed that all failures occurred at the adhesive zone. Conclusion: Conditioning methods with 50-l̀m Al2O3 or tribochemical silica coating allowed bonding between resin and composite that was statistically similar and stronger than conditioning with acid etching.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated the effect of post surface conditioning on the fatigue resistance of bovine teeth restored with resin-bonded fiber-reinforced composite (FRC). Root canals of 20 single-rooted bovine teeth (16 mm long) were prepared to 12 mm using a preparation drill of a double-tapered fiber post system. Using acrylic resin, each specimen was embedded (up to 3.0 mm from the cervical part of the specimen) in a PVC cylinder and allocated into one of two groups (n = 10) based on the post surface conditioning method: acid etching plus silanization or tribochemical silica coating (30 μm SiOx + silanization). The root canal dentin was etched (H2PO3 for 30 seconds), rinsed, and dried. A multi-step adhesive system was applied to the root dentin and the fiber posts were cemented with resin cement. The specimens were submitted to one million fatigue cycles. After fatigue testing, a score was given based on the number of fatigue cycles until fracture. All of the specimens were resistant to fatigue. No fracture of the root or the post and no loss of retention of the post were observed. The methodology and the results of this study indicate that tribochemical silica coating and acid etching performed equally well when dynamic mechanical loading was used.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated the effect of denture base polymer type (heat- and microwave-polymerized), ridge lap surface treatment (with and without methyl methacrylate-MMA etching) and thermocycling on the microtensile bond strength (mTBS) of Biotone acrylic teeth. Flat-ground, ridge-lap surface of posterior artifcial teeth were bonded to cylinders of each denture base resin, resulting in the following groups (n=6): G1a - Clássico/with MMA etching; G1b - Clássico/without MMA etching; G2a - OndaCryl/with MMA etching; G2b - OndaCryl/without MMA etching. Rectangular bar specimens with a cross-sectional area of 1 mm 2 were prepared. Half of the bars in each group were thermocycled (5,000 cycles between 4°C and 60°C). mTBS testing was performed in an universal testing machine at a crosshead speed of 0.5 mm/min. Data were analyzed statistically by three-way ANOVA (a=0.05). There was no statisti-caly signifcant difference (p>0.05) for the factors (resin, surface treatment,and thermocycling) or their interactions. The mean mTBS values (MPa) and standard deviations were as follows: Thermocycling - G1a: 41.00 (14.00); G1b: 31.00 (17.00); G2a: 50.00 (27.00); G2b: 40.00 (18.00); No thermocycling - G1a: 37.00 (14.00); G1b: 43.00 (25.00); G2a: 43.00 (14.00); G2b: 40.00 (27.00). The mTBS of Biotone artifcial teeth to the denture base acrylic resins was not infuenced by the polymer type, surface treatment or thermocycling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Investigation of the effectiveness of surface treatments that promote a strong bond strength of resin cements to metals can contribute significantly to the longevity of metal-ceramic restorations. This study evaluated the effect of surface treatments on the shear bond strength (SBS) of a resin cement to commercially pure titanium (CP Ti). Ninety cast CP Ti discs were divided into 3 groups (n=30), which received one of the following airborne-particle abrasion conditions: (1) 50 μm Al2O3 particles; (2) 30 μm silica-modified Al2O3 particles (Cojet Sand); (3) 110 μm silica-modified Al2O3 particles (Rocatec). For each airborne-particle abrasion condition, the following post-airborne-particle abrasion treatments were used (n=10): (1) none; (2) adhesive Adper Single Bond 2; (3) silane RelyX Ceramic Primer. RelyX ARC resin cement was bonded to CP Ti surfaces. All specimens were thermally cycled before being tested in shear mode. Failure mode was determined. The best association was Rocatec plus silane. All groups showed 100% adhesive failure. There were combinations that promote higher SBS than the protocol recommended by the manufacturer of RelyX ARC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated the use of zoledronic acid, a resorption inhibitor, as a medication for root resorption treatment of late replanted teeth. Twenty-four maxillary right central incisors of rats were avulsed and kept dry for 30 min. Then, the teeth were divided into 2 groups. In group I, root surface was treated with 2% sodium fluoride for 20 min; in group II, 10-6M zoledronic acid solution was used for 20 min. All root canals were filled with calcium hydroxide. Next, teeth were replanted in their respective sockets. After 15 and 60 days post-replantation, the animals were killed and the anatomic pieces were obtained and prepared for microscopic and morphometric analyses. The results showed that zoledronic acid was capable of limiting the occurrence of root resorption and preserving cementum resorption. Further research must be performed to confirm the use of zoledronic acid in root surface treatment of late replanted teeth.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study aimed to evaluate Y-TZP surface after different airborne particle abrasion protocols. Seventy-six Y-TZP ceramic blocks (5×4×4) mm3 were sintered and polished. Specimens were randomly divided into 19 groups (n=4) according to control group and 3 factors: a) protocol duration (2 and 4 s); b) particle size (30 μm, alumina coated silica particle; 45 μm, alumina particle; and 145 μm, alumina particle) and; c) pressure (1.5, 2.5 and 4.5 bar). Airborne particle abrasion was performed following a strict protocol. For qualitative and quantitative results, topography surfaces were analyzed in a digital optical profilometer (Interference Microscopic), using different roughness parameters (Ra, Rq, Rz, X-crossing, Mr1, Mr2 and Sdr) and 3D images. Surface roughness also was analyzed following the primer and silane applications on Y-TZP surfaces. One-way ANOVA revealed that treatments (application period, particle size and pressure of particle blasting) provided significant difference for all roughness parameters. The Tukey test determined that the significant differences between groups were different among roughness parameters. In qualitative analysis, the bonding agent application reduced roughness, filing the valleys in the surface. The protocols performed in this study verified that application period, particle size and pressure influenced the topographic pattern and amplitude of roughness.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effect of conventional and whitening dentifrices on the weight loss, surface roughness, and early in situ biofilm formation on the surface of dental ceramics. Standardized feldspar ceramic specimens (Vita VM7 and Vita VM13) were submitted to the following experimental conditions: no brushing; brushing without a dentifrice; brushing with a conventional dentifrice; and brushing with a whitening dentifrice. A brushing machine was used to simulate brushing. The mass and surface roughness of all specimens from the test groups were evaluated prior to and after brushing. Ten participants used an oral device for eight hours to evaluate the biofilm formed in situ on the specimens. Scanning electron microscopy was used for qualitative and quantitative analysis of the biofilm. ANOVA and Tukey tests were used to analyze the results of weight loss, surface roughness, and presence of bacteria. A one-way Kruskal-Wallis test was used for bacterial colonization results. For both ceramics, brushing with a whitening dentifrice resulted in weight loss that was significantly greater when compared to brushing without a dentifrice or with a conventional dentifrice. Increased surface roughness was noticed on VM13 ceramic samples with both dentifrices, whereas only conventional dentifrice had a significant effect on the surface roughness of VM7 samples. For both VM7 and VM13, no difference was found between the experimental conditions with regard to the presence or number of bacteria. Cocci and short rods were the predominant microbial morphotypes. Granular or fibrillar acellular material partially covered the specimens. Brushing with a whitening dentifrice resulted in significant weight loss of ceramic restorations, while brushing with both conventional and whitening dentifrices can roughen ceramic surfaces. The increase in roughness was not clinically significant to contribute to increased biofilm formation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated three surface treatments and their effects on the shear bond strength between a resin cement and one of three ceramics. The ceramic surfaces were evaluated with scanning electron microscopy (SEM ) as well. Specimens were treated with 50 μm aluminum oxide airborne particles, 10% hydrofluoric acid etching, or a combination of the two. Using a matrix with a center hole (5.0 mm × 3.0 mm), the ceramic bonding areas were filled with resin cement following treatment. The specimens were submitted to thermal cycling (1,000 cycles) and the shear bond strength was tested (0.5 mm/minute). The failure mode and the effect of surface treatment were analyzed under SEM . Data were submitted to ANOVA and a Tukey test (α = 0.05). Duceram Plus and IPS Empress 2 composite specimens produced similar shear bond strength results (p > 0.05), regardless of the treatment method used. Hydrofluoric acid decreased the shear bond strength of In-Ceram Alumina specimens. For all materials, surface treatments changed the morphological surface. All treatments influenced the shear bond strength and failure mode of the ceramic/resin cement composites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An alternative for grinding of sintered ceramic is the machining on the green state of the ceramic, which presents easy cutting without the introduction of harmful defects to its mechanical resistance. However, after sintering there are invariably distortions caused by the heterogeneous distribution of density gradients, which are located in the most outlying portions of the compacted workpiece. In order to minimize these density gradients, this study examined the influence of different allowance values and their corresponding influence in distortion after sintering alumina specimens with 99.8 % purity by turning operation using cemented carbide tool. Besides distortion, other output variables were analyzed, such as tool wear, cutting force and surface roughness of green and sintered ceramics. Results showed a distortion reduction up to 81.4%. Green machining is beneficial for reducing surface roughness in both green and sintered states. Cutting tool wear has a direct influence on surface roughness and cutting force.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To properly describe the interactions between the ocean and atmosphere, it is necessary to assess a variety of time and spatial scales phenomena. Here, high resolution oceanographic and meteorological data collected during an observational campaign carried out aboard a ship in the tropical Atlantic Ocean, on May 15-24, 2002, is used to describe the radiation balance at the ocean interface. Data collected by two PIRATA buoys, along the equator at 23°W and 35°W and satellite and climate data are compared with the data obtained during the observational campaign. Comparison indicates remarkable similarity for daily and hourly values of radiation fluxes components as consequence of the temporal and spatial consistence presented by the air and water temperatures measured in situ and estimated from large scale information. The discrepancy, mainly in the Sao Pedro and Sao Paulo Archipelago area, seems to be associated to the local upwelling of cold water, which is not detected in all other estimates investigated here. More in situ data are necessary to clarify whether this upwelling flow has a larger scale effect and what are the meteorological and oceanographic implications of the local upwelling area on the tropical waters at the Brazilian coast.