944 resultados para Structure-function
Resumo:
The betaine/GABA transporter BGT1 is one of the most important osmolyte transporters in the kidney. BGT1 is a member of the neurotransmitter sodium symporter (NSS) family, facilitates Na+/Cl--coupled betaine uptake to cope with hyperosmotic stress. Betaine transport in kidney cells is upregulated under hypertonic conditions by a yet unknown mechanism when increasing amounts of intracellular BGT1 are inserted into the plasma membrane. Re-establishing isotonicity results in ensuing depletion of BGT1 from the membrane. BGT1 phosphorylation on serines and threonines might be a regulation mechanism. In the present study, four potential PKC phosphorylation sites were mutated to alanines and the responses to PKC activators, phorbol 12-myristate acetate (PMA) and dioctanoyl-sn-glycerol (DOG) were determined. GABA-sensitive currents were diminished after 30 min preincubation with these PKC activators. Staurosporine blocked the response to DOG. Three mutants evoked normal GABA-sensitive currents but currents in oocytes expressing the mutant T40A were greatly diminished. [3H]GABA uptake was also determined in HEK-293 cells expressing EGFP-tagged BGT1 with the same mutations. Three mutants showed normal upregulation of GABA uptake after hypertonic stress, and downregulation by PMA was normal compared to EGFP-BGT1. In contrast, GABA uptake by the T40A mutant showed no response to hypertonicity or PMA. Confocal microscopy of the EGFP-BGT1 mutants expressed in MDCK cells, grown on glass or filters, revealed that T40A was present in the cytoplasm after 24 h hypertonic stress while the other mutants and EGFP-BGT1 were predominantely present in the plasma membrane. All four mutants co-migrated with EGFP-BGT1 on Western blots suggesting they are full-length proteins. In conclusion, T235, S428, and S564 are not involved in downregulation of BGT1 due to phosphorylation by PKC. However, T40 near the N-terminus may be part of a hot spot important for normal trafficking or insertion of BGT1 into the plasma membrane. Additionally, a link between substrate transport regulation, insertion of BGT1 into the plasma membrane and N-glycosylation in the extracellular loop 2 (EL2) could be revealed. The functional importance of two predicted N-glycosylation sites, which are conserved in EL2 within the NSS family were investigated for trafficking, transport and regulated plasma membrane insertion by immunogold-labelling, electron microscopy, mutagenesis, two-electrode voltage clamp measurements in Xenopus laevis oocytes and uptake of radioactive-labelled substrate into MDCK cells. Trafficking and plasma membrane insertion of BGT1 was clearly promoted by proper N-glycosylation in both, oocytes and MDCK cells. De-glycosylation with PNGase F or tunicamycin led to a decrease in substrate affinity and transport rate. Mutagenesis studies revealed that in BGT1 N183 is the major N-glycosylation site responsible for full protein activity. Replacement of N183 with aspartate resulted in a mutant, which was not able to bind N-glycans suggesting that N171 is a non-glycosylated site in BGT1. N183D exhibited close to WT transport properties in oocytes. Surprisingly, in MDCK cells plasma membrane insertion of the N183D mutant was no longer regulated by osmotic stress indicating unambiguously that association with N-glycans at this position is linked to osmotic stress-induced transport regulation in BGT1. The molecular transport mechanism of BGT1 remains largely unknown in the absence of a crystal structure. Therefore investigating the structure-function relationship of BGT1 by a combination of structural biology (2D and 3D crystallization) and membrane protein biochemistry (cell culture, substrate transport by radioactive labeled GABA uptake into cells and proteoliposomes) was the aim of this work. While the functional assays are well established, structure determination of eukaryotic membrane transporters is still a challenge. Therefore, a suitable heterologous expression system could be defined, starting with cloning and overexpression of an optimized gene. The achieved expression levels in P. pastoris were high enough to proceed with isolation of BGT1. Furthermore, purification protocols could be established and resulted in pure protein, which could even be reconstituted in an active form. The quality and homogeneity of the protein allowed already 2D and 3D crystallization, in which initial crystals could be obtained. Interestingly, the striking structural similarity of BGT1 to the bacterial betaine transporter BetP, which became a paradigm for osmoregulated betaine transport, provided information on substrate coordination in BGT1. The structure of a BetP mutant that showed activity for GABA was solved to 3.2Å in complex with GABA in an inward facing open state. This structure shed some light into the molecular transport mechanisms in BGT1 and might help in future to design conformationally locked BGT1 to enforce the on-going structure determination.
Resumo:
Lamellar bodies are the storage sites for lung surfactant within type II alveolar epithelial cells. The structure-function models of lamellar bodies are based on microscopic analyses of chemically fixed tissue. Despite available alternative fixation methods that are less prone to artifacts, such as cryofixation by high-pressure freezing, the nature of the lung, being mostly air filled, makes it difficult to take advantage of these improved methods. In this paper, we propose a new approach and show for the first time the ultrastructure of intracellular lamellar bodies based on cryo-electron microscopy of vitreous sections in the range of nanometer resolution. Thus, unspoiled by chemical fixation, dehydration and contrasting agents, a close to native structure is revealed. Our approach uses perfluorocarbon to substitute the air in the alveoli. Lung tissue was subsequently high-pressure frozen, cryosectioned and observed in a cryo-electron microscope. The lamellar bodies clearly show a tight lamellar morphology. The periodicity of these lamellae was 7.3 nm. Lamellar bifurcations were observed in our cryosections. The technical approach described in this paper allows the examination of the native cellular ultrastructure of the surfactant system under near in vivo conditions, and therefore opens up prospectives for scrutinizing various theories of lamellar body biogenesis, exocytosis and recycling.
Resumo:
During a half-day symposium, the topic 'Channels and Transporters' was covered with five lectures, including a presentation on 'Introduction and Basics of Channels and Transporters' by Beat Ernst, lectures on structure, function and physiology of channels and transporters ('The Structural Basis for Ion Conduction and Gating in Pentameric Ligand-Gated Ion Channels' by Raimund Dutzler and 'Uptake and Efflux Transporters for Endogenous Substances and for Drugs' by Dietrich Keppler), and a case study lecture on 'Avosentan' by Werner Neidhart. The program was completed by Matthias Hediger who introduced to the audience the National Center of Competence in Research (NCCR)-TransCure in his lecture entitled 'From Transport Physiology to Identification of Therapeutic Targets'.
Resumo:
P450 oxidoreductase (POR) is the electron donor for all microsomal P450s including steroidogenic enzymes CYP17A1, CYP19A1 and CYP21A2. We found a novel POR mutation P399_E401del in two unrelated Turkish patients with 46,XX disorder of sexual development. Recombinant POR proteins were produced in yeast and tested for their ability to support steroid metabolizing P450 activities. In comparison to wild-type POR, the P399_E401del protein was found to decrease catalytic efficiency of 21-hydroxylation of progesterone by 68%, 17α-hydroxylation of progesterone by 76%, 17,20-lyase action on 17OH-pregnenolone by 69%, aromatization of androstenedione by 85% and cytochrome c reduction activity by 80%. Protein structure analysis of the three amino acid deletion P399_E401 revealed reduced stability and flexibility of the mutant. In conclusion, P399_E401del is a novel mutation in POR that provides valuable genotype-phenotype and structure-function correlation for mutations in a different region of POR compared to previous studies. Characterization of P399_E401del provides further insight into specificity of different P450s for interaction with POR as well as nature of metabolic disruptions caused by more pronounced effect on specific P450s like CYP17A1 and aromatase.
Resumo:
Purpose: To assess possible association between intrinsic structural damage and clinical disability by correlating spinal cord diffusion-tensor (DT) imaging data with electrophysiological parameters in patients with a diagnosis of multiple sclerosis (MS). Materials and Methods: This study was approved by the local ethical committee according to the declaration of Helsinki and written informed consent was obtained. DT images and T1- and T2-weighted images of the spinal cord were acquired in 28 healthy volunteers and 41 MS patients. Fractional anisotropy (FA) and apparent diffusion coefficients were evaluated in normal-appearing white matter (NAWM) at the cervical level and were correlated with motor-evoked potentials (n = 34). Asymmetry index was calculated for FA values with corresponding left and right regions of interest as percentage of the absolute difference between these values relative to the sum of the respective FA values. Statistical analysis included Spearman rank correlations, Mann-Whitney test, and reliability analysis. Results: Healthy volunteers had low asymmetry index (1.5%-2.2%). In MS patients, structural abnormalities were reflected by asymmetric decrease of FA (asymmetry index: 3.6%; P = .15). Frequently asymmetrically affected among MS patients was left and right central motor conduction time (CMCT) to abductor digiti minimi muscle (ADMM) (asymmetry index, 15%-16%) and tibialis anterior muscle (TAM) (asymmetry index, 9.5%-14.1%). Statistically significant correlations of functional (ie, electrophysiological) and structural (ie, DT imaging) asymmetries were found (P = .005 for CMCT to ADMM; P = .007 for CMCT to TAM) for the cervical lateral funiculi, which comprise the crossed pyramidal tract. Interobserver reliability for DT imaging measurements was excellent (78%-87%). Conclusion: DT imaging revealed asymmetric anatomic changes in spinal cord NAWM, which corresponded to asymmetric electrophysiological deficits for both arms and legs, and reflected a specific structure-function relationship in the human spinal cord. © RSNA, 2013.
Resumo:
The spatio-temporal control of gene expression is fundamental to elucidate cell proliferation and deregulation phenomena in living systems. Novel approaches based on light-sensitive multiprotein complexes have recently been devised, showing promising perspectives for the noninvasive and reversible modulation of the DNA-transcriptional activity in vivo. This has lately been demonstrated in a striking way through the generation of the artificial protein construct light-oxygen-voltage (LOV)-tryptophan-activated protein (TAP), in which the LOV-2-Jα photoswitch of phototropin1 from Avena sativa (AsLOV2-Jα) has been ligated to the tryptophan-repressor (TrpR) protein from Escherichia coli. Although tremendous progress has been achieved on the generation of such protein constructs, a detailed understanding of their functioning as opto-genetical tools is still in its infancy. Here, we elucidate the early stages of the light-induced regulatory mechanism of LOV-TAP at the molecular level, using the noninvasive molecular dynamics simulation technique. More specifically, we find that Cys450-FMN-adduct formation in the AsLOV2-Jα-binding pocket after photoexcitation induces the cleavage of the peripheral Jα-helix from the LOV core, causing a change of its polarity and electrostatic attraction of the photoswitch onto the DNA surface. This goes along with the flexibilization through unfolding of a hairpin-like helix-loop-helix region interlinking the AsLOV2-Jα- and TrpR-domains, ultimately enabling the condensation of LOV-TAP onto the DNA surface. By contrast, in the dark state the AsLOV2-Jα photoswitch remains inactive and exerts a repulsive electrostatic force on the DNA surface. This leads to a distortion of the hairpin region, which finally relieves its tension by causing the disruption of LOV-TAP from the DNA.
Resumo:
In modern life- and medical-sciences major efforts are currently concentrated on creating artificial photoenzymes, consisting of light- oxygen-voltage-sensitive (LOV) domains fused to a target enzyme. Such protein constructs possess great potential for controlling the cell metabolism as well as gene function upon light stimulus. This has recently been impressively demonstrated by designing a novel artificial fusion protein, connecting the AsLOV2-Jα-photosensor from Avena sativa with the Rac1-GTPase (AsLOV2-Jα-Rac1), and by using it, to control the motility of cancer cells from the HeLa-line. Although tremendous progress has been achieved on the generation of such protein constructs, a detailed understanding of their signaling pathway after photoexcitation is still in its infancy. Here, we show through computer simulations of the AsLOV2-Jα-Rac1-photoenzyme that the early processes after formation of the Cys450-FMN-adduct involve the breakage of a H-bond between the carbonyl oxygen FMN-C4O and the amino group of Gln513, followed by a rotational reorientation of its sidechain. This initial event is followed by successive events including β-sheet tightening and transmission of torsional stress along the Iβ-sheet, which leads to the disruption of the Jα-helix from the N-terminal end. Finally, this process triggers the detachment of the AsLOV2-Jα-photosensor from the Rac1-GTPase, ultimately enabling the activation of Rac1 via binding of the effector protein PAK1.
Resumo:
OBJECTIVE: A severely virilized 46, XX newborn girl was referred to our center for evaluation and treatment of congenital adrenal hyperplasia (CAH) because of highly elevated 17alpha-hydroxyprogesterone levels at newborn screening; biochemical tests confirmed the diagnosis of salt-wasting CAH. Genetic analysis revealed that the girl was compound heterozygote for a previously reported Q318X mutation in exon 8 and a novel insertion of an adenine between nucleotides 962 and 963 in exon 4 of the CYP21A2 gene. This 962_963insA mutation created a frameshift leading to a stop codon at amino acid 161 of the P450c21 protein. AIM AND METHODS: To better understand structure-function relationships of mutant P450c21 proteins, we performed multiple sequence alignments of P450c21 with three mammalian P450s (P450 2C8, 2C9 and 2B4) with known structures as well as with human P450c17. Comparative molecular modeling of human P450c21 was then performed by MODELLER using the X-ray crystal structure of rabbit P450 2B4 as a template. RESULTS: The new three dimensional model of human P450c21 and the sequence alignment were found to be helpful in predicting the role of various amino acids in P450c21, especially those involved in heme binding and interaction with P450 oxidoreductase, the obligate electron donor. CONCLUSION: Our model will help in analyzing the genotype-phenotype relationship of P450c21 mutations which have not been tested for their functional activity in an in vitro assay.
Resumo:
Quantitative data on lung structure are essential to set up structure-function models for assessing the functional performance of the lung or to make statistically valid comparisons in experimental morphology, physiology, or pathology. The methods of choice for microscopy-based lung morphometry are those of stereology, the science of quantitative characterization of irregular three-dimensional objects on the basis of measurements made on two-dimensional sections. From a practical perspective, stereology is an assumption-free set of methods of unbiased sampling with geometric probes, based on a solid mathematical foundation. Here, we discuss the pitfalls of lung morphometry and present solutions, from specimen preparation to the sampling scheme in multiple stages, for obtaining unbiased estimates of morphometric parameters such as volumes, surfaces, lengths, and numbers. This is demonstrated on various examples. Stereological methods are accurate, efficient, simple, and transparent; the precision of the estimates depends on the size and distribution of the sample. For obtaining quantitative data on lung structure at all microscopic levels, state-of-the-art stereology is the gold standard.
Resumo:
Cytochrome P450 proteins are involved in metabolism of drugs and xenobiotics. In the endoplasmic reticulum a single nicotinamide adenine dinucleotide phosphate (NADPH) P450 oxidoreductase (POR) supplies electrons to all microsomal P450s for catalytic activity. POR is a flavoprotein that contains both flavin mononucleotide and flavin adenine dinucleotide as cofactors and uses NADPH as the source of electrons. We have recently reported a number of POR mutations in the patients with disordered steroidogenesis. In the first report we had described missense mutations (A287P, R457H, V492E, C569Y, and V608F) identified in four patients with defects in steroid production. Each POR variant was produced as recombinant N-27 form of the enzyme in bacteria and as full-length form in yeast. Membranes from bacteria or yeast expressing normal or variant POR were purified and their activities were characterized in cytochrome c and CYP17A1 assays. Later we have published a larger study that described a whole range of POR mutations and characterized the mutants/polymorphisms A115V, T142A, M263V, Y459H, A503V, G539R, L565P, R616X, V631I, and F646del from the sequencing of patient DNA. We also studied POR variants Y181D, P228L, R316W, G413S, and G504R that were available in public databases or published literature. Three-dimensional structure of rat POR is known and we have used this structure to deduce the structure-function correlation of POR mutations in human. The missense mutations found in patients with disordered steroidogenesis are generally in the co-factor binding and functionally important domains of POR and the apparent polymorphisms are found in regions with lesser structural importance. A variation in POR can alter the activity of all microsomal P450s, and therefore, can affect the metabolism of drugs and xenobiotics even when the P450s involved are otherwise normal. It is important to study the genetic and biochemical basis of POR variants in human population to gain information about possible differences in P450 mediated reactions among the individuals carrying a variant or polymorphic form of POR that could impact their metabolism.
Resumo:
The detailed mechanistic aspects for the final starch digestion process leading to effective alpha-glucogenesis by the 2 mucosal alpha-glucosidases, human sucrase-isomaltase complex (SI) and human maltase-glucoamylase (MGAM), are poorly understood. This is due to the structural complexity and vast variety of starches and their intermediate digestion products, the poorly understood enzyme-substrate interactions occurring during the digestive process, and the limited knowledge of the structure-function properties of SI and MGAM. Here we analyzed the basic catalytic properties of the N-terminal subunit of MGAM (ntMGAM) on the hydrolysis of glucan substrates and compared it with those of human native MGAM isolated by immunochemical methods. In relation to native MGAM, ntMGAM displayed slower activity against maltose to maltopentose (G5) series glucose oligomers, as well as maltodextrins and alpha-limit dextrins, and failed to show the strong substrate inhibitory "brake" effect caused by maltotriose, maltotetrose, and G5 on the native enzyme. In addition, the inhibitory constant for acarbose was 2 orders of magnitude higher for ntMGAM than for native MGAM, suggesting lower affinity and/or fewer binding configurations of the active site in the recombinant enzyme. The results strongly suggested that the C-terminal subunit of MGAM has a greater catalytic efficiency due to a higher affinity for glucan substrates and larger number of binding configurations to its active site. Our results show for the first time, to our knowledge, that the C-terminal subunit of MGAM is responsible for the MGAM peptide's "glucoamylase" activity and is the location of the substrate inhibitory brake. In contrast, the membrane-bound ntMGAM subunit contains the poorly inhibitable "maltase" activity of the internally duplicated enzyme.
Resumo:
The alveolated structure of the pulmonary acinus plays a vital role in gas exchange function. Three-dimensional (3D) analysis of the parenchymal region is fundamental to understanding this structure-function relationship, but only a limited number of attempts have been conducted in the past because of technical limitations. In this study, we developed a new image processing methodology based on finite element (FE) analysis for accurate 3D structural reconstruction of the gas exchange regions of the lung. Stereologically well characterized rat lung samples (Pediatr Res 53: 72-80, 2003) were imaged using high-resolution synchrotron radiation-based X-ray tomographic microscopy. A stack of 1,024 images (each slice: 1024 x 1024 pixels) with resolution of 1.4 mum(3) per voxel were generated. For the development of FE algorithm, regions of interest (ROI), containing approximately 7.5 million voxels, were further extracted as a working subunit. 3D FEs were created overlaying the voxel map using a grid-based hexahedral algorithm. A proper threshold value for appropriate segmentation was iteratively determined to match the calculated volume density of tissue to the stereologically determined value (Pediatr Res 53: 72-80, 2003). The resulting 3D FEs are ready to be used for 3D structural analysis as well as for subsequent FE computational analyses like fluid dynamics and skeletonization.
Resumo:
RNA helicases represent a large family of proteins implicated in many biological processes including ribosome biogenesis, splicing, translation and mRNA degradation. However, these proteins have little substrate specificity, making inhibition of selected helicases a challenging problem. The prototypical DEAD box RNA helicase, eIF4A, works in conjunction with other translation factors to prepare mRNA templates for ribosome recruitment during translation initiation. Herein, we provide insight into the selectivity of a small molecule inhibitor of eIF4A, hippuristanol. This coral-derived natural product binds to amino acids adjacent to, and overlapping with, two conserved motifs present in the carboxy-terminal domain of eIF4A. Mutagenesis of amino acids within this region allowed us to alter the hippuristanol-sensitivity of eIF4A and undertake structure/function studies. Our results provide an understanding into how selective targeting of RNA helicases for pharmacological intervention can be achieved.
Resumo:
Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization- and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide-gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport.