918 resultados para Sperm motility
Resumo:
The fertility of cryopreserved Lates calcarifer sperm was studied to increase the availability of semen for routine fertilization of stripped eggs and to provide a tool for selective breeding. Semen diluted (1:4 v/v) and frozen (-196 degrees C) with 5% dimethylsulfoxide (DMSO) or 10% glycerol (final concentration) as cryoprotectants was used to inseminate freshly stripped ova. Frozen-thawed sperm were motile for about 4 min after being mixed with seawater. In the DMSO medium, post-thaw sperm activation was immediate after dilution with seawater, but in the glycerol medium maximum motility intensity was delayed for up to 1 min. When eggs and sperm were mixed before the addition of seawater, semen frozen with DMSO as cryoprotectant gave a mean hatch rate (84.1%) no different (P > 0.05) from that of unfrozen semen diluted with Ringer's solution (80.7%) or with DMSO (83.7%), but higher (P < 0.05) than that of semen frozen with glycerol (60.9%). Adding sperm to seawater 30 s before mixing with eggs did not improve the fertility of sperm cryopreserved with glycerol. Eggs inseminated with glycerol-cryoprotected sperm showed higher mortality during incubation than those inseminated with DMSO-cryoprotected sperm. Sperm held in liquid nitrogen for 90 days with DMSO as cryoprotectant yielded acceptable fertilization and hatching rates with semen-to-ova ratios of up to 1:100 (v/v) , and produced fish with no apparent abnormalities over a 29-day period after hatch. These results show that cryopreservation of L. calcarifer sperm is feasible and well suited to a variety of hatchery purposes.
Resumo:
Bull sperm heads and tails have been separated by proteolytic digestion (trypsin) and plasma membranes have been isolated, using discontinuous sucrose density gradient centrifugation. Plasma membrane bound Ca2+-ATPase is shown to be associated mostly with the tail membranes. Pyrene excimer fluorescence and diphenylhexatriene fluorescence polarization experiments indicate a more fluid lipid phase in the tail region. Differences in surface charge distribution have been found, using 1-anilinonaphthalene-8-sulfonate and Tb3+ as fluorescent probes.
Resumo:
Sperm chromatin status was assessed in 565 Zebu and Zebu crossbred beef bulls in extensive tropical environments using the sperm chromatin structure assay (SCSA). The SCSA involved exposure of sperm to acid hydrolysis for 0.5 or 5.0 minutes, followed by flow cytometry to ascertain relative amounts of double-stranded (normal) and single-stranded (denatured) DNA, which was used to generate a DNA fragmentation index (%DFI). With conventional SCSA (0.5-minute SCSA), 513 bulls (91%) had <15 %DFI, 24 bulls (4%) had 15 to 27 %DFI, and 28 bulls (5%) had >27 %DFI. In 5.0-minute SCSA, 432 bulls (76%) had <15 %DFI, 68 bulls (12%) had 15 to 27 %DFI and 65 bulls (12%) had >27 %DFI. For most bulls, the SCSA was repeatable on two to four occasions; however, because most bulls had <15 %DFI, repeatability of the SCSA will need to be determined in a larger number of bulls in the 15 to 27 %DFI and >27 %DFI categories. The %DFI was negatively correlated with several bull semen parameters and the strongest negative correlation was with normal sperm. There was a strong positive correlation between %DFI and sperm head abnormalities. Based on these findings, most Zebu beef bulls in extensive tropical environments had relatively stable sperm chromatin. Based on the apparent negative correlations with conventional semen parameters, we inferred that the SCSA measured a unique feature of sperm quality, which has also been suggested for other species. Further studies on the relationships between sperm chromatin stability and fertility are required in beef bulls before chromatin status can be used as an additional predictor of the siring capacity of individual bulls in extensive multiple-sire herds. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Standards have been placed to regulate the microbial and preservative contents to assure that foods are safe to the consumer. In a case of a food-related disease outbreak, it is crucial to be able to detect and identify quickly and accurately the cause of the disease. In addition, for every day control of food microbial and preservative contents, the detection methods must be easily performed for numerous food samples. In this present study, quicker alternative methods were studied for identification of bacteria by DNA fingerprinting. A flow cytometry method was developed as an alternative to pulsed-field gel electrophoresis, the golden method . DNA fragment sizing by an ultrasensitive flow cytometer was able to discriminate species and strains in a reproducible and comparable manner to pulsed-field gel electrophoresis. This new method was hundreds times faster and 200,000 times more sensitive. Additionally, another DNA fingerprinting identification method was developed based on single-enzyme amplified fragment length polymorphism (SE-AFLP). This method allowed the differentiation of genera, species, and strains of pathogenic bacteria of Bacilli, Staphylococci, Yersinia, and Escherichia coli. These fingerprinting patterns obtained by SE-AFLP were simpler and easier to analyze than those by the traditional amplified fragment length polymorphism by double enzyme digestion. Nisin (E234) is added as a preservative to different types of foods, especially dairy products, around the world. Various detection methods exist for nisin, but they lack in sensitivity, speed or specificity. In this present study, a sensitive nisin-induced green fluorescent protein (GFPuv) bioassay was developed using the Lactococcus lactis two-component signal system NisRK and the nisin-inducible nisA promoter. The bioassay was extremely sensitive with detection limit of 10 pg/ml in culture supernatant. In addition, it was compatible for quantification from various food matrices, such as milk, salad dressings, processed cheese, liquid eggs, and canned tomatoes. Wine has good antimicrobial properties due to its alcohol concentration, low pH, and organic content and therefore often assumed to be microbially safe to consume. Another aim of this thesis was to study the microbiota of wines returned by customers complaining of food-poisoning symptoms. By partial 16S rRNA gene sequence analysis, ribotyping, and boar spermatozoa motility assay, it was identified that one of the wines contained a Bacillus simplex BAC91, which produced a heat-stable substance toxic to the mitochondria of sperm cells. The antibacterial activity of wine was tested on the vegetative cells and spores of B. simplex BAC91, B. cereus type strain ATCC 14579 and cereulide-producing B. cereus F4810/72. Although the vegetative cells and spores of B. simplex BAC91 were sensitive to the antimicrobial effects of wine, the spores of B. cereus strains ATCC 14579 and F4810/72 stayed viable for at least 4 months. According to these results, Bacillus spp., more specifically spores, can be a possible risk to the wine consumer.
Resumo:
During spermatogenesis, giant tiger shrimp (Penaeus monodon) from Queensland, eastern Australia had a high proportion of testicular spermatids that appeared 'hollow' because their nuclei were not visible with the haematoxylin and eosin stain. When examined by transmission electron microscopy, the nuclei of hollow spermatids contained highly decondensed chromatin, with large areas missing fibrillar chromatin. Together with hollow spermatids, testicular pale enlarged (PE) spermatids with weakly staining and marginated chromatin were observed. Degenerate-eosinophilic-clumped (DEC) spermatids that appeared as aggregated clumps were also present in testes tubules. Among 171 sub-adult and adult P. monodon examined from several origins, 43% displayed evidence of hollow spermatids in the testes, 33% displayed PE spermatids and 15% displayed DEC spermatids. These abnormal sperm were also found at lower prevalence in the vas deferens and spermatophore. We propose 'Hollow Sperm Syndrome (HSS)' to describe this abnormal sperm condition as these morphological aberrations have yet to be described in penaeid shrimp. No specific cause of HSS was confirmed by examining either tank or pond cultured shrimp exposed to various stocking densities, temperatures, salinities, dietary and seasonal factors. Compared with wild broodstock, HSS occurred at higher prevalence and severity among sub-adults originating from farms, research ponds and tanks. Further studies are required to establish what physiological, hormonal or metabolic processes may cause HSS and whether it compromises the fertility of male P. monodon.
Resumo:
The primary purpose of spermatozoa is to deliver the paternal DNA to the oocyte at fertilization. During the complex events of fertilization, if the spermatozoon penetrating the oocyte contains compromised or damaged sperm chromatin, the subsequent progression of embryogenesis and foetal development may be affected. Variation in sperm DNA damage and protamine content in ejaculated spermatozoa was reported in the cattle, with potential consequences to bull fertility. Protamines are sperm-specific nuclear proteins that are essential to packaging of the condensed paternal genome in spermatozoa. Sperm DNA damage is thought to be repaired during the process of protamination. This study investigates the potential correlation between sperm protamine content, sperm DNA damage and the subsequent relationships between sperm chromatin and commonly measured reproductive phenotypes. Bos indicus sperm samples (n = 133) were assessed by two flow cytometric methods: the sperm chromatin structure assay (SCSA) and an optimized sperm protamine deficiency assay (SPDA). To verify the SPDA assay for bovine sperm protamine content, samples collected from testis, caput and cauda epididymidis were analyzed. As expected, mature spermatozoa in the cauda epididymidis had higher protamine content when compared with sperm samples from testis and caput epididymidis (p < 0.01). The DNA fragmentation index (DFI), determined by SCSA, was positively correlated (r = 0.33 ± 0.08, p < 0.05) with the percentage of spermatozoa that showed low protamine content using SPDA. Also, DFI was negatively correlated (r = -0.21 ± 0.09, p < 0.05) with the percentage of spermatozoa with high protamine content. Larger scrotal circumference contributes to higher sperm protamine content and lower content of sperm DNA damage (p < 0.05). In conclusion, sperm protamine content and sperm DNA damage are closely associated. Protamine deficiency is likely to be one of the contributing factors to DNA instability and damage, which can affect bull fertility. © 2014 American Society of Andrology and European Academy of Andrology.
Resumo:
Genetic correlations of young bull and heifer puberty traits with measures of early and lifetime female reproductive performance were estimated in two tropical beef cattle genotypes. Heifer age at puberty was highly (r(g) = -0.71 +/- 0.11) and moderately (r(g) = -0.40 +/- 0.20) genetically correlated with pregnancy rate at first annual mating (mating 1) and lifetime annual calving rate, respectively in Brahman (BRAH). In Tropical Composite (TCOMP), heifer age at puberty was highly correlated with reproductive outcomes from the first re-breed (mating 2), mainly due to its association with lactation anoestrous interval (r(g) = 0.72 +/- 0.17). Scrotal circumference were correlated with heifer age at puberty (r(g) = -0.41 +/- 0.11 at 12 months in BRAH; -0.30 +/- 0.13 at 6 months in TCOMP) but correlations were lower with later female reproduction traits. Bull insulin-like growth factor-I was correlated with heifer age at puberty (r(g) = -0.56 +/- 0.11 in BRAH; -0.43 +/- 0.11 in TCOMP) and blood luteinising hormone concentration was moderately correlated with lactation anoestrous interval (r(g) = 0.59 +/- 0.23) in TCOMP. Semen quality traits, including mass activity, motility and percent normal sperm were genetically correlated with lactation anoestrus and female lifetime female reproductive traits in both genotypes, but the magnitudes of the relationships differed with bull age at measurement. Preputial eversion and sheath scores were genetically associated with lifetime calving and weaning rates in both genotypes. Several of the early-in-life male and female measures examined were moderately to highly genetically correlated with early and lifetime female reproduction traits and may be useful as indirect selection criteria for improving female reproduction in tropical breeds in northern Australia.
Resumo:
Adult fertile male bonnet monkeys (Macaca radiata) were continuously deprived of endogenous follicle stimulating hormone (FSH) support for 240 days by injecting them with 1 ml of characterized monkey antiserum to oFSH every 48 hr; control monkeys received during the same period normal monkey serum instead. Testicular function was assessed at periodic intervals by (a) carrying out differential counting of sperm in the ejaculate obtained and (b) determining the hyaluronidase activity as well as in vitro 3H thymidine incorporation into DNA of testicular tissue removed at biopsy. Both the quality (viability and motility) of the sperms voided and the total sperm counts showed marked decreases as a function of time of immunization, the first significant reduction being noted by 100 days. FSH deprivation affected both the biochemical parameters used to test testicular functionality they being reduced at ∼200 days by 50%-60%. The fertility of these monkeys was evaluated at periodic times after 90 days of treatment by means of mating studies. FSH deprivation had rendered the monkeys incapable of impregnating any of the females used. Testosterone and luteinizing hormone (LH) levels remained unchanged following FSH antiserum injection. With cessation of antiserum treatment testicular function and fertility were completely restored to normalcy, indicating that the observed effect was specifically due to FSH deprivation. This study thus provides conclusive evidence for the involvement of FSH in maintenance of testicular function and fertility in the adult male primate.
Resumo:
The highly dynamic remodeling of the actin cytoskeleton is responsible for most motile and morphogenetic processes in all eukaryotic cells. In order to generate appropriate spatial and temporal movements, the actin dynamics must be under tight control of an array of actin binding proteins (ABPs). Many proteins have been shown to play a specific role in actin filament growth or disassembly of older filaments. Very little is known about the proteins affecting recycling i.e. the step where newly depolymerized actin monomers are funneled into new rounds of filament assembly. A central protein family involved in the regulation of actin turnover is cyclase-associated proteins (CAP, called Srv2 in budding yeast). This 50-60 kDa protein was first identified from yeast as a suppressor of an activated RAS-allele and a factor associated with adenylyl cyclase. The CAP proteins harbor N-terminal coiled-coil (cc) domain, originally identified as a site for adenylyl cyclase binding. In the N-terminal half is also a 14-3-3 like domain, which is followed by central proline-rich domains and the WH2 domain. In the C-terminal end locates the highly conserved ADP-G-actin binding domain. In this study, we identified two previously suggested but poorly characterized interaction partners for Srv2/CAP: profilin and ADF/cofilin. Profilins are small proteins (12-16 kDa) that bind ATP-actin monomers and promote the nucleotide exchange of actin. The profilin-ATP-actin complex can be directly targeted to the growth of the filament barbed ends capped by Ena/VASP or formins. ADF/cofilins are also small (13-19 kDa) and highly conserved actin binding proteins. They depolymerize ADP-actin monomers from filament pointed ends and remain bound to ADP-actin strongly inhibiting nucleotide exchange. We revealed that the ADP-actin-cofilin complex is able to directly interact with the 14-3-3 like domain at the N-terminal region of Srv2/CAP. The C-terminal high affinity ADP-actin binding site of Srv2/CAP competes with cofilin for an actin monomer. Cofilin can thus be released from Srv2/CAP for the subsequent round of depolymerization. We also revealed that profilin interacts with the first proline-rich region of Srv2/CAP and that the binding occurs simultaneously with ADP-actin binding to C-terminal domain of Srv2/CAP. Both profilin and Srv2/CAP can promote nucleotide exchange of actin monomer. Because profilin has much higher affinity to ATP-actin than Srv2/CAP, the ATP-actin-profilin complex is released for filament polymerization. While a disruption of cofilin binding in yeast Srv2/CAP produces a severe phenotype comparable to Srv2/CAP deletion, an impairment of profilin binding from Srv2/CAP results in much milder phenotype. This suggests that the interaction with cofilin is essential for the function of Srv2/CAP, whereas profilin can also promote its function without direct interaction with Srv2/CAP. We also show that two CAP isoforms with specific expression patterns are present in mice. CAP1 is the major isoform in most tissues, while CAP2 is predominantly expressed in muscles. Deletion of CAP1 from non-muscle cells results in severe actin phenotype accompanied with mislocalization of cofilin to cytoplasmic aggregates. Together these studies suggest that Srv2/CAP recycles actin monomers from cofilin to profilin and thus it plays a central role in actin dynamics in both yeast and mammalian cells.
Resumo:
Because the worldwide demand for sperm donors is much higher than the actual supply available through fertility clinics, an informal online market has emerged for sperm donation. Very little empirical evidence exists, however, on this newly formed market and even less on the characteristics that lead to donor success. This article therefore explores the determinants of online sperm donors’ selection success, which leads to the production of offspring via informal donation. We find that donor age and income play a significant role in donor success as measured by the number of times selected, even though there is no requirement for ongoing paternal investment. Donors with less extroverted and lively personality traits who are more intellectual, shy and systematic are more successful in realizing offspring via informal donation. These results contribute to both the economic literature on human behaviour and on large-scale decision-making.
Resumo:
Arabinomannan-containing glycolipids, relevant to the mycobacterial cell-wall component lipoarabinomannan, were synthesized by chemical methods. The glycolipids were presented with tri- and tetrasaccharide arabinomannans as the sugar portion and a double alkyl chain as the lyophilic portion. Following synthesis, systematic biological and biophysical studies were undertaken in order to identify the effects of the glycolipids during mycobacterium growth. The studies included mycobacterial growth, biofilm formation and motility assays. From the studies, it was observed that the synthetic glycolipid with higher arabinan residues inhibited the mycobacterial growth, lessened the biofilm formation and impaired the motility of mycobacteria. A surface plasmon resonance study involving the immobilized glycan surface and the mycobacterial crude lysates as analytes showed specificities of the interactions. Further, it was found that cell lysates from motile bacteria bound oligosaccharide with higher affinity than non-motile bacteria.
Resumo:
Gastric motility disorders, including delayed gastric emptying (gastroparesis), impaired postprandial fundic relaxation, and gastric myoelectrical disorders, can occur in type 1 diabetes, chronic renal failure, and functional dyspepsia (FD). Symptoms like upper abdominal pain, early satiation, bloating, nausea and vomiting may be related to gastroparesis. Diabetic gastroparesis is related to autonomic neuropathy. Scintigraphy is the gold standard in measuring gastric emptying, but it is expensive, requires specific equipment, and exposes patients to radiation. It also gives information about the intragastric distribution of the test meal. The 13C-octanoic acid breath test (OBT) is an alternative, indirect method of measuring gastric emptying with a stable isotope. Electrogastrography (EGG) registers the slow wave originating in the pacemaker area of the stomach and regulating the peristaltic contractions of the antrum. This study compares these three methods of measuring gastric motility in patients with type 1 diabetes, functional dyspepsia, and chronic renal failure. Currently no effective drugs for treating gastric motility disorders are available. We studied the effect of nizatidine on gastric emptying, because in preliminary studies this drug has proven to have a prokinetic effect due to its cholinergic properties. Of the type 1 patients, 26% had delayed gastric emptying of solids as measured by scintigraphy. Abnormal intragastric distribution of the test meal occurred in 37% of the patients, indicating impaired fundic relaxation. The autonomic neuropathy score correlated positively with the gastric emptying rate of solids (P = 0.006), but HbA1C, plasma glucose levels, or abdominal symptoms were unrelated to gastric emptying or intragastric distribution of the test meal. Gastric emptying of both solids and liquids was normal in all FD patients but abnormal intragastric distribution occurred in 38% of the patients. Nizatidine improved symptom scores and quality of life in FD patients, but not significantly. Instead of enhancing, nizatidine slowed gastric emptying in FD patients (P < 0.05). No significant difference appeared in the frequency of the gastric slow waves measured by EGG in the patients and controls. The correlation between gastric half-emptying times of solids measured by scintigraphy and OBT was poor both in type 1 diabetes and FD patients. According to this study, dynamic dual-tracer scintigraphy is more accurate than OBT or EGG in measuring gastric emptying of solids. Additionally it provides information about gastric emptying of liquids and the intragastric distribution of the ingested test meal.
Resumo:
Previously, it was reported from this laboratory that the heme groups of hemoglobin are “buried” within globin at pH 4.0 and not dissociated, on the basis of the obiligatory requirement of urea for the reaction of N-bromosuccinimide with the heme groups of hemoglobin at pH4.0, and also on the basis of the “normalization” of the spectrum of hemoglobin at this pH in the presence of urea or sucrose. In the present study, it has been shown that the behaviour of sperm whale myoglobin with respect to its reaction with N-bromosuccinimide and with respect to spectral “normalization” in urea or sucrose are essentially similar to that of hemoglobin. It has also been demonstrated that the spectral “normalization” obtained with crystalline hemin is not identical with that obtained with either hemoglobin or myoglobin. The bearing of the results of the present study on the earlier work on hemoglobin is indicated.
Resumo:
Despite its bad reputation in the mass media, cholesterol is an indispensable constituent of cellular membranes and vertebrate life. It is, however, also potentially lethal as it may accumulate in the arterial intima causing atherosclerosis or elsewhere in the body due to inherited conditions. Studying cholesterol in cells, and research on how the cell biology of cholesterol affects on system level is essential for a better understanding of the disease states associated with cholesterol and for the development of new therapies for these conditions. On its way to the cell, exogenous cholesterol traverses through endosomes, transport vesicles involved in internalizing material to cells, and needs to be transported out of this compartment. This endosomal pool of cholesterol is important for understanding both the common disorders of metabolism and the more rare hereditary disorders of cholesterol metabolism. The study of cholesterol in cells has been hampered by the lack of bright fluorescent sterol analogs that would resemble cholesterol enough to be used in cellular studies. In the first study of my thesis, we present a new sterol analog, Boron-Dipyrromethene (BODIPY)-cholesterol for visualizing sterols in living cells and organism. This fluorescent cholesterol derivative is shown to behave similarly to cholesterol both by atomic scale computer simulations and biochemical experiments. We characterize its localization inside different types of living cells and show that it can be used to study sterol trafficking in living organisms. Two sterol binding proteins associated with the endosomal membrane; the Niemann-Pick type C disease protein 1 (NPC1) and the Oxysterol Binding Protein Related Protein 1 (ORP1) are the subjects of the rest of this study. Sensing cholesterol on endosomes, transporting lipids away from this compartment and the effects these lipids play on cellular metabolism are considered. In the second study we characterize how the NPC1 protein affects lipid metabolism. We show that this cholesterol binding protein affects synthesis of triglycerides and that genetic polymorphisms or a genetic defect in the NPC1 gene affect triglyceride on the whole body level. These effects take place via regulation of carbon fluxes to different lipid classes in cells. In the third part we characterize the effects of another endosomal sterol binding protein, ORP1L on the function and motility of endosomes. Specifically we elucidate how a mutation in the ability of ORP1L to bind sterols affects its behavior in cells, and how a change in ORP1L levels in cells affects the localization, degradative capacity and motility of endosomes. In addition we show that ORP1L manipulations affect cholesterol balance also in macrophages, a cell type important for the development of atherosclerosis.