957 resultados para Self-organizing Feature Maps


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation consists of three papers. The first paper "Managing the Workload: an Experiment on Individual Decision Making and Performance" experimentally investigates how decision-making in workload management affects individual performance. I designed a laboratory experiment in order to exogenously manipulate the schedule of work faced by each subject and to identify its impact on final performance. Through the mouse click-tracking technique, I also collected interesting behavioral measures on organizational skills. I found that a non-negligible share of individuals performs better under externally imposed schedules than in the unconstrained case. However, such constraints are detrimental for those good in self-organizing. The second chapter, "On the allocation of effort with multiple tasks and piecewise monotonic hazard function", tests the optimality of a scheduling model, proposed in a different literature, for the decisional problem faced in the experiment. Under specific assumptions, I find that such model identifies what would be the optimal scheduling of the tasks in the Admission Test. The third paper "The Effects of Scholarships and Tuition Fees Discounts on Students' Performances: Which Monetary Incentives work Better?" explores how different levels of monetary incentives affect the achievement of students in tertiary education. I used a Regression Discontinuity Design to exploit the assignment of different monetary incentives, to study the effects of such liquidity provision on performance outcomes, ceteris paribus. The results show that a monetary increase in the scholarships generates no effect on performance since the achievements of the recipients are all centered near the requirements for non-returning the benefit. Secondly, students, who are actually paying some share of the total cost of college attendance, surprisingly, perform better than those whose cost is completely subsidized. A lower benefit, relatively to a higher aid, it motivates students to finish early and not to suffer the extra cost of a delayed graduation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis explores the methods based on the free energy principle and active inference for modelling cognition. Active inference is an emerging framework for designing intelligent agents where psychological processes are cast in terms of Bayesian inference. Here, I appeal to it to test the design of a set of cognitive architectures, via simulation. These architectures are defined in terms of generative models where an agent executes a task under the assumption that all cognitive processes aspire to the same objective: the minimization of variational free energy. Chapter 1 introduces the free energy principle and its assumptions about self-organizing systems. Chapter 2 describes how from the mechanics of self-organization can emerge a minimal form of cognition able to achieve autopoiesis. In chapter 3 I present the method of how I formalize generative models for action and perception. The architectures proposed allow providing a more biologically plausible account of more complex cognitive processing that entails deep temporal features. I then present three simulation studies that aim to show different aspects of cognition, their associated behavior and the underlying neural dynamics. In chapter 4, the first study proposes an architecture that represents the visuomotor system for the encoding of actions during action observation, understanding and imitation. In chapter 5, the generative model is extended and is lesioned to simulate brain damage and neuropsychological patterns observed in apraxic patients. In chapter 6, the third study proposes an architecture for cognitive control and the modulation of attention for action selection. At last, I argue how active inference can provide a formal account of information processing in the brain and how the adaptive capabilities of the simulated agents are a mere consequence of the architecture of the generative models. Cognitive processing, then, becomes an emergent property of the minimization of variational free energy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Feature selection is an important and active issue in clustering and classification problems. By choosing an adequate feature subset, a dataset dimensionality reduction is allowed, thus contributing to decreasing the classification computational complexity, and to improving the classifier performance by avoiding redundant or irrelevant features. Although feature selection can be formally defined as an optimisation problem with only one objective, that is, the classification accuracy obtained by using the selected feature subset, in recent years, some multi-objective approaches to this problem have been proposed. These either select features that not only improve the classification accuracy, but also the generalisation capability in case of supervised classifiers, or counterbalance the bias toward lower or higher numbers of features that present some methods used to validate the clustering/classification in case of unsupervised classifiers. The main contribution of this paper is a multi-objective approach for feature selection and its application to an unsupervised clustering procedure based on Growing Hierarchical Self-Organising Maps (GHSOMs) that includes a new method for unit labelling and efficient determination of the winning unit. In the network anomaly detection problem here considered, this multi-objective approach makes it possible not only to differentiate between normal and anomalous traffic but also among different anomalies. The efficiency of our proposals has been evaluated by using the well-known DARPA/NSL-KDD datasets that contain extracted features and labelled attacks from around 2 million connections. The selected feature sets computed in our experiments provide detection rates up to 99.8% with normal traffic and up to 99.6% with anomalous traffic, as well as accuracy values up to 99.12%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Due to the several kinds of services that use the Internet and data networks infra-structures, the present networks are characterized by the diversity of types of traffic that have statistical properties as complex temporal correlation and non-gaussian distribution. The networks complex temporal correlation may be characterized by the Short Range Dependence (SRD) and the Long Range Dependence - (LRD). Models as the fGN (Fractional Gaussian Noise) may capture the LRD but not the SRD. This work presents two methods for traffic generation that synthesize approximate realizations of the self-similar fGN with SRD random process. The first one employs the IDWT (Inverse Discrete Wavelet Transform) and the second the IDWPT (Inverse Discrete Wavelet Packet Transform). It has been developed the variance map concept that allows to associate the LRD and SRD behaviors directly to the wavelet transform coefficients. The developed methods are extremely flexible and allow the generation of Gaussian time series with complex statistical behaviors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For a given self-map f of M, a closed smooth connected and simply-connected manifold of dimension m ≥ 4, we provide an algorithm for estimating the values of the topological invariant Dm r [f], which equals the minimal number of r-periodic points in the smooth homotopy class of f. Our results are based on the combinatorial scheme for computing Dm r [f] introduced by G. Graff and J. Jezierski [J. Fixed Point Theory Appl. 13 (2013), 63–84]. An open-source implementation of the algorithm programmed in C++ is publicly available at http://www.pawelpilarczyk.com/combtop/.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissolved organic matter (DOM) is a complex mixture of organic compounds, ubiquitous in marine and freshwater systems. Fluorescence spectroscopy, by means of Excitation-Emission Matrices (EEM), has become an indispensable tool to study DOM sources, transport and fate in aquatic ecosystems. However the statistical treatment of large and heterogeneous EEM data sets still represents an important challenge for biogeochemists. Recently, Self-Organising Maps (SOM) has been proposed as a tool to explore patterns in large EEM data sets. SOM is a pattern recognition method which clusterizes and reduces the dimensionality of input EEMs without relying on any assumption about the data structure. In this paper, we show how SOM, coupled with a correlation analysis of the component planes, can be used both to explore patterns among samples, as well as to identify individual fluorescence components. We analysed a large and heterogeneous EEM data set, including samples from a river catchment collected under a range of hydrological conditions, along a 60-km downstream gradient, and under the influence of different degrees of anthropogenic impact. According to our results, chemical industry effluents appeared to have unique and distinctive spectral characteristics. On the other hand, river samples collected under flash flood conditions showed homogeneous EEM shapes. The correlation analysis of the component planes suggested the presence of four fluorescence components, consistent with DOM components previously described in the literature. A remarkable strength of this methodology was that outlier samples appeared naturally integrated in the analysis. We conclude that SOM coupled with a correlation analysis procedure is a promising tool for studying large and heterogeneous EEM data sets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissolved organic matter (DOM) is a complex mixture of organic compounds, ubiquitous in marine and freshwater systems. Fluorescence spectroscopy, by means of Excitation-Emission Matrices (EEM), has become an indispensable tool to study DOM sources, transport and fate in aquatic ecosystems. However the statistical treatment of large and heterogeneous EEM data sets still represents an important challenge for biogeochemists. Recently, Self-Organising Maps (SOM) has been proposed as a tool to explore patterns in large EEM data sets. SOM is a pattern recognition method which clusterizes and reduces the dimensionality of input EEMs without relying on any assumption about the data structure. In this paper, we show how SOM, coupled with a correlation analysis of the component planes, can be used both to explore patterns among samples, as well as to identify individual fluorescence components. We analysed a large and heterogeneous EEM data set, including samples from a river catchment collected under a range of hydrological conditions, along a 60-km downstream gradient, and under the influence of different degrees of anthropogenic impact. According to our results, chemical industry effluents appeared to have unique and distinctive spectral characteristics. On the other hand, river samples collected under flash flood conditions showed homogeneous EEM shapes. The correlation analysis of the component planes suggested the presence of four fluorescence components, consistent with DOM components previously described in the literature. A remarkable strength of this methodology was that outlier samples appeared naturally integrated in the analysis. We conclude that SOM coupled with a correlation analysis procedure is a promising tool for studying large and heterogeneous EEM data sets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Solar-powered vehicle activated signs (VAS) are speed warning signs powered by batteries that are recharged by solar panels. These signs are more desirable than other active warning signs due to the low cost of installation and the minimal maintenance requirements. However, one problem that can affect a solar-powered VAS is the limited power capacity available to keep the sign operational. In order to be able to operate the sign more efficiently, it is proposed that the sign be appropriately triggered by taking into account the prevalent conditions. Triggering the sign depends on many factors such as the prevailing speed limit, road geometry, traffic behaviour, the weather and the number of hours of daylight. The main goal of this paper is therefore to develop an intelligent algorithm that would help optimize the trigger point to achieve the best compromise between speed reduction and power consumption. Data have been systematically collected whereby vehicle speed data were gathered whilst varying the value of the trigger speed threshold. A two stage algorithm is then utilized to extract the trigger speed value. Initially the algorithm employs a Self-Organising Map (SOM), to effectively visualize and explore the properties of the data that is then clustered in the second stage using K-means clustering method. Preliminary results achieved in the study indicate that using a SOM in conjunction with K-means method is found to perform well as opposed to direct clustering of the data by K-means alone. Using a SOM in the current case helped the algorithm determine the number of clusters in the data set, which is a frequent problem in data clustering.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main purpose of this work is to study coincidences of fiber-preserving self-maps over the circle S 1 for spaces which are fiberbundles over S 1 and the fiber is the Klein bottle K. We classify pairs of self-maps over S 1 which can be deformed fiberwise to a coincidence free pair of maps. © 2012 Pushpa Publishing House.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider various problems regarding roots and coincidence points for maps into the Klein bottle . The root problem where the target is and the domain is a compact surface with non-positive Euler characteristic is studied. Results similar to those when the target is the torus are obtained. The Wecken property for coincidences from to is established, and we also obtain the following 1-parameter result. Families which are coincidence free but any homotopy between and , , creates a coincidence with . This is done for any pair of maps such that the Nielsen coincidence number is zero. Finally, we exhibit one such family where is the constant map and if we allow for homotopies of , then we can find a coincidence free pair of homotopies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Concept maps are a technique used to obtain a visual representation of a person's ideas about a concept or a set of related concepts. Specifically, in this paper, through a qualitative methodology, we analyze the concept maps proposed by 52 groups of teacher training students in order to find out the characteristics of the maps and the degree of adequacy of the contents with regard to the teaching of human nutrition in the 3rd cycle of primary education. The participants were enrolled in the Teacher Training Degree majoring in Primary Education, and the data collection was carried out through a training activity under the theme of what to teach about Science in Primary School? The results show that the maps are a useful tool for working in teacher education as they allow organizing, synthesizing, and communicating what students know. Moreover, through this work, it has been possible to see that future teachers have acceptable skills for representing the concepts/ideas in a concept map, although the level of adequacy of concepts/ideas about human nutrition and its relations is usually medium or low. These results are a wake-up call for teacher training, both initial and ongoing, because they shows the inability to change priorities as far as the selection of content is concerned.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Growing models have been widely used for clustering or topology learning. Traditionally these models work on stationary environments, grow incrementally and adapt their nodes to a given distribution based on global parameters. In this paper, we present an enhanced unsupervised self-organising network for the modelling of visual objects. We first develop a framework for building non-rigid shapes using the growth mechanism of the self-organising maps, and then we define an optimal number of nodes without overfitting or underfitting the network based on the knowledge obtained from information-theoretic considerations. We present experimental results for hands and we quantitatively evaluate the matching capabilities of the proposed method with the topographic product.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a new method for self-localization of mobile robots, based on a PCA positioning sensor to operate in unstructured environments, is proposed and experimentally validated. The proposed PCA extension is able to perform the eigenvectors computation from a set of signals corrupted by missing data. The sensor package considered in this work contains a 2D depth sensor pointed upwards to the ceiling, providing depth images with missing data. The positioning sensor obtained is then integrated in a Linear Parameter Varying mobile robot model to obtain a self-localization system, based on linear Kalman filters, with globally stable position error estimates. A study consisting in adding synthetic random corrupted data to the captured depth images revealed that this extended PCA technique is able to reconstruct the signals, with improved accuracy. The self-localization system obtained is assessed in unstructured environments and the methodologies are validated even in the case of varying illumination conditions.