979 resultados para SURFACE CONTAMINANT REMOVAL
Resumo:
The ubiquitin-proteasome system governs the half-life of most cellular proteins. Calorie restriction (CR) extends the maximum life span of a variety of species and prevents oxidized protein accumulation. We studied the effects of CR on the ubiquitin-proteasome system and protein turnover in aging Saccharomyces cerevisiae. CR increased chronological life span as well as proteasome activity compared to control cells. The levels of protein carbonyls, a marker of protein oxidation, and those of polyubiquitinated proteins were modulated by CR. Controls, but not CR cells, exhibited a significant increase in oxidized proteins. In keeping with decreased proteasome activity, polyubiquitinated proteins were increased in young control cells compared to time-matched CR cells, but were profoundly decreased in aged control cells despite decreased proteasomal activity. This finding is related to a decreased polyubiquitination ability due to the impairment of the ubiquitin-activating enzyme in aged control cells, probably related to a more oxidative microenvironment. CR preserves the ubiquitin-proteasome system activity. Overall, we found that aging and CR modulate many aspects of protein modification and turnover. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
A high cost-effective treatment of sulphochromic waste is proposed employing a raw coconut coir as biosorbent for Cr(VI) removal. The ideal pH and sorption kinetic, sorption capacities, and sorption sites were the studied biosorbent parameters. After testing five different isotherm models with standard solutions, Redlich-Peterson and Toth best fitted the experimental data, obtaining a theoretical Cr(VI) sorption capacity (SC) of 6.3 mg g(-1). Acid-base potentiometric titration indicated around of 73% of sorption sites were from phenolic compounds, probably lignin. Differences between sorption sites in the coconut coir before and after Cr adsorption identified from Fourier transform infrared spectra suggested a modification of sorption sites after sulphochromic waste treatment, indicating that the sorption mechanism involves organic matter oxidation and chromium uptake. For sulphocromic waste treatment, the SC was improved to 26.8 +/- 0.2 mg g(-1), and no adsorbed Cr(VI) was reduced, remaining only Cr(III) in the final solution. The adsorbed material was calcinated to obtain Cr2O3, with a reduction of more than 60% of the original mass. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The synthetic hydrous niobium oxide has been used for phosphate removal from the aqueous solutions. The kinetic data correspond very well to the pseudo second-order equation The phosphate removal tended. to increase with a decrease of pH. The equilibrium data describe very well the Langmuir isotherm. The peak appearing at 1050 cm(-1) in IR spectra after adsorption was attributed to the bending vibration of adsorbed phosphate. The adsorption capacities are high, and increased with increasing temperature. The evaluated Delta G degrees and Delta H degrees indicate the spontaneous and endothermic nature of the reactions. The adsorptions occur with increase in entropy (Delta S positive) value suggest increase in randomness at the solid-liquid interface during the adsorption. A phosphate desorbability of approximately 60% was observed with water at pH 12, which indicated a relatively strong bonding between the adsorbed phosphate and the sorptive sites on the surface of the adsorbent. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The conditions for maximization of the enzymatic activity of lipase entrapped in sol-gel matrix were determined for different vegetable oils using an experimental design. The effects of pH, temperature, and biocatalyst loading on lipase activity were verified using a central composite experimental design leading to a set of 13 assays and the surface response analysis. For canola oil and entrapped lipase, statistical analyses showed significant effects for pH and temperature and also the interactions between pH and temperature and temperature and biocatalyst loading. For the olive oil and entrapped lipase, it was verified that the pH was the only variable statistically significant. This study demonstrated that response surface analysis is a methodology appropriate for the maximization of the percentage of hydrolysis, as a function of pH, temperature, and lipase loading.
Resumo:
Titanium and its alloys have been used in dentistry due to their excellent corrosion resistance and biocompatibility. It was shown that even a pure titanium metal and its alloys spontaneously form a bone-like apatite layer on their surfaces within a living body. The purpose of this work was to evaluate the growth of calcium phosphates at the surface of the experimental alloy Ti-7.5Mo. We produced ingots from pure titanium and molybdenum using an arc-melting furnace We then submitted these Ingots to heat treatment at 1100 degrees C for one hour, cooled the samples in water, and cold-worked the cooled material by swaging and machining. We measured the media roughness (Ra) with a roughness meter (1.3 and 2.6 mu m) and cut discs (13 mm in diameter and 4 mm in thickness) from each sample group. The samples were treated by biomimetic methods for 7 or 14 days to form an apatite coating on the surface. We then characterized the surfaces with an optical profilometer, a scanning electron microscope and contact angle measurements. The results of this study indicate that apatite can form on the surface of a Ti-7.5Mo alloy, and that a more complete apatite layer formed on the Ra = 2 6 mu m material. This Increased apatite formation resulted in a lower contact angle (C) 2010 Elsevier B.V. All rights reserved
Resumo:
A type of Nb(2)O(5)center dot 3H(2)O was synthesized and its phosphate removal potential was investigated in this study. The kinetic study, adsorption isotherm, pH effect, thermodynamic study and desorption were examined in batch experiments. The kinetic process was described by a pseudo-second-order rate model very well. The phosphate adsorption tended to increase with a decrease of pH. The adsorption data fitted well to the Langmuir model with which the maximum P adsorption capacity was estimated to be 18.36 mg-Pg(-1). The peak appearing at 1050 cm(-1) in IR spectra after adsorption was attributed to the bending vibration of adsorbed phosphate. The positive values of both Delta H degrees and Delta S degrees suggest an endothermic reaction and increase in randomness at the solid-liquid interface during the adsorption. Delta G degrees values obtained were negative indicating a spontaneous adsorption process. A phosphate desorbability of approximately 68% was observed with water at pH 12, which indicated a relatively strong bonding between the adsorbed phosphate and the sorptive sites on the surface of the adsorbent. The immobilization of phosphate probably occurs by the mechanisms of ion exchange and physicochemical attraction. Due to its high adsorption capacity, this type of hydrous niobium oxide has the potential for application to control phosphorus pollution.
Resumo:
BACKGROUND: The combined effects of vanillin and syringaldehyde on xylitol production by Candida guilliermondii using response surface methodology (RSM) have been studied. A 2(2) full-factorial central composite design was employed for experimental design and analysis of the results. RESULTS: Maximum xylitol productivities (Q(p) = 0.74 g L(-1) h(-1)) and yields (Y(P/S) = 0.81 g g(-1)) can be attained by adding only vanillin at 2.0 g L(-1) to the fermentation medium. These data were closely correlated with the experimental results obtained (0.69 +/- 0.04 g L(-1) h(-1) and 0.77 +/- 0.01 g g(-1)) indicating a good agreement with the predicted value. C. guilliermondii was able to convert vanillin completely after 24 h of fermentation with 94% yield of vanillyl alcohol. CONCLUSIONS: The bioconversion of xylose into xylitol by C. guilliermondii is strongly dependent on the combination of aldehydes and phenolics in the fermentation medium. Vanillin is a source of phenolic compound able to improve xylitol production by yeast. The conversion of vanillin to alcohol vanilyl reveals the potential of this yeast for medium detoxification. (C) 2009 Society of Chemical Industry
Resumo:
Response surface methodology was used to evaluate optimal time, temperature and oxalic acid concentration for simultaneous saccharification and fermentation (SSF) of corncob particles by Pichia stipitis CBS 6054. Fifteen different conditions for pretreatment were examined in a 2(3) full factorial design with six axial points. Temperatures ranged from 132 to 180 degrees C, time from 10 to 90 min and oxalic acid loadings from 0.01 to 0.038 g/g solids. Separate maxima were found for enzymatic saccharification and hemicellulose fermentation, respectively, with the condition for maximum saccharification being significantly more severe. Ethanol production was affected by reaction temperature more than by oxalic acid and reaction time over the ranges examined. The effect of reaction temperature was significant at a 95% confidence level in its effect on ethanol production. Oxalic acid and reaction time were statistically significant at the 90% level. The highest ethanol concentration (20 g/l) was obtained after 48 h with an ethanol volumetric production rate of 0.42 g ethanol l(-1) h(-1). The ethanol yield after SSF with P. stipitis was significantly higher than predicted by sequential saccharification and fermentation of substrate pretreated under the same condition. This was attributed to the secretion of beta-glucosidase by P. stipitis. During SSF, free extracellular beta-glucosidase activity was 1.30 pNPG U/g with P. stipitis, while saccharification without the yeast was 0.66 pNPG U/g. Published by Elsevier Ltd.
Resumo:
The joint process between tapes of coated conductors is a critical issue for the most of the applications of high temperature superconductors (HTS). Using different fabrication techniques joints of YBCO coated superconductors were prepared and characterized through electrical measurements. For soldering material low melting point eutectic alloys, such as In-Sn (m.p. 116 degrees C) and Sn-Pb (m. p. 189 degrees C) were selected to prepare lap joints with effective length between 1 to 20 cm. The splice resistance and the critical current of the joints were evaluated by I-V curve measurements with the maximum current strength above the critical current, in order to evaluate the degree of degradation for each joint method. Pressed lap joints prepared with tapes without external reinforcement presented low resistance lap joint nevertheless some critical current degradation occurs when strong pressing is applied. When mechanical pressure is applied during the soldering process we can reduce the thickness of the solder alloy and a residual resistance arises from contributions of high resistivity matrix and external reinforcement. The lap joints for reinforced tape were prepared using two methods: the first, using ""as-supplied"" tape and the other after reinforcement-removal; in the latter case, the tapes were resoldered using Sn-Pb alloy. The results using several joint geometries, distinct surface preparation processes and different soldering materials are presented and analysed. The solder alloy with lower melting point and the longer joint length presented the smallest joint resistance.
Resumo:
This work discusses the resultant microstructure of laser surface treated galvanised steel and the mechanical properties of adhesively bonded surfaces therein. The surface microstructure obtained at laser intensities between 170 and 1700 MW cm 22 exhibit zinc melting and cavity formation. The wavy surface morphology of the treated surface exhibits an average roughness Ra between 1.0 and 1.5 mu m, and a mean roughness depth R(z) of 8.6 mu m. Atomic force microscopic analyses revealed that the R(z) inside the laser shot cavities increased from 68 to 243 nm when the incident laser intensity was increased from 170 to 1700 MW cm(-2). X-ray fluorescence analyses were used to measure Zn coating thicknesses as a function of process parameters. Both X-ray fluorescence and X-ray diffraction analyses demonstrated that the protective coating remains at the material surface, and the steel structure beneath was not affected by the laser treatment. Tensile tests under peel strength conditions demonstrated that the laser treated adhesively joined samples had resistance strength up to 88 MPa, compared to a maximum of only 23 MPa for the untreated surfaces. The maximum deformation for rupture was also greatly increased from 0.07%, for the original surface, to 0.90% for the laser treated surfaces.
Resumo:
BACKGROUND: The hydrolysis of hemicellulosic material can provide liquor with high xylose concentration (which can be used as a fermentation medium) and phenolic compounds (Phs), potentially immunostimulating compounds. However, these hydrolysates must be detoxified in order to remove the Phs that can act as inhibitors in bioconversions. RESULTS: Aqueous two-phase systems composed of thermoseparating copolymers were used for rice straw hydrolysate detoxification. The hydrolysis process was able to promote chemical breakdown of 85% of the total hemicellulose content, 14% of the cellulose, and 2% of the lignin. The hydrolysate obtained contained 19.7 g L-1 of xylose and several phenolic compounds, such as vanillin, vanillic acid, ferullic acid, etc. The phenolics extraction was studied as a function of copolymer molar mass (1100 g mol(-1), 2000 g mol(-1) and 2800 g mol(-1)), their percentages (from 5% to 50%) and Phs initial concentration. Phenolic compounds extraction of around 80% was obtained under the following conditions: 20% (w/w) and 35% (w/w) copolymer 1100 g mol-1, 35% (w/w) copolymer 2000 g mol(-1) and 35% (w/w) copolymer 2800 g mol(-1) at 25 degrees C. CONCLUSIONS: The results demonstrated the viability of this method for the removal of Phs from rice straw hydrolysate, which has potential uses in bioconversion processes. (c) 2007 Society of Chemical Industry.
Resumo:
Results of the surface modification of Ti-16Si-4B powder alloy by nitrogen ion implantation are presented, together with the experimental description of the preparation of that powder by high-energy ball milling and hot pressing. The phase structure, chemical composition and morphology of sample surfaces were observed by utilizing X-ray diffractometer (XRD), atomic force microscope (AFM) and scanning electron microscopy (SEM). A tribological characterization was carried out with a ball-on-disc tribometer and an SEM. Friction coefficient is compared with the one obtained for Ti-6Al-4V alloy and the wear scars characterized by SEM/EDS (energy dispersive spectroscopy). The concentration profile of the detected elements have been investigated using Auger electron spectroscopy (AES) depth profiling. Our results show that a shallow implanted layer of oxygen and nitrogen ions were obtained at the Ti-16Si -4B alloy surface, sufficient to modify slightly its tribological properties. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
Resumo:
Ticks are blood-feeding arthropods that secrete immunomodulatory molecules through their saliva to antagonize host inflammatory and immune responses. As dendritic cells (DCs) play a major role in host immune responses, we studied the effects of Rhipicephalus sanguineus tick saliva on DC migration and function. Bone marrow-derived immature DCs pre-exposed to tick saliva showed reduced migration towards macrophage inflammatory protein (MIP)-1 alpha, MIP-1 beta and regulated upon activation, normal T cell expressed and secreted (RANTES) chemokines in a Boyden microchamber assay. This inhibition was mediated by saliva which significantly reduced the percentage and the average cell-surface expression of CC chemokine receptor CCR5. In contrast, saliva did not alter migration of DCs towards MIP-3 beta, not even if the cells were induced for maturation. Next, we evaluated the effect of tick saliva on the activity of chemokines related to DC migration and showed that tick saliva per se inhibits the chemotactic function of MIP-1 alpha, while it did not affect RANTES, MIP-1 beta and MIP-3 beta. These data suggest that saliva possibly reduces immature DC migration, while mature DC chemotaxis remains unaffected. In support of this, we have analyzed the percentage of DCs on mice 48 h after intradermal inoculation with saliva and found that the DC turnover in the skin was reduced compared with controls. Finally, to test the biological activity of the saliva-exposed DCs, we transferred DCs pre-cultured with saliva and loaded with the keyhole limpet haemocyanin (KLH) antigen to mice and measured their capacity to induce specific T cell cytokines. Data showed that saliva reduced the synthesis of both T helper (Th)1 and Th2 cytokines, suggesting the induction of a non-polarised T cell response. These findings propose that the inhibition of DCs migratory ability and function may be a relevant mechanism used by ticks to subvert the immune response of the host. (c) 2007 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Surface heat treatment in glasses and ceramics, using CO(2) lasers, has attracted the attention of several researchers around the world due to its impact in technological applications, such as lab-on-a-chip devices, diffraction gratings and microlenses. Microlens fabrication on a glass surface has been studied mainly due to its importance in optical devices (fiber coupling, CCD signal enhancement, etc). The goal of this work is to present a systematic study of the conditions for microlens fabrications, along with the viability of using microlens arrays, recorded on the glass surface, as bidimensional codes for product identification. This would allow the production of codes without any residues (like the fine powder generated by laser ablation) and resistance to an aggressive environment, such as sterilization processes. The microlens arrays were fabricated using a continuous wave CO(2) laser, focused on the surface of flat commercial soda-lime silicate glass substrates. The fabrication conditions were studied based on laser power, heating time and microlens profiles. A He-Ne laser was used as a light source in a qualitative experiment to test the viability of using the microlenses as bidimensional codes.
Resumo:
Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[06/52521-0]