398 resultados para Runtime
Resumo:
Models are an effective tool for systems and software design. They allow software architects to abstract from the non-relevant details. Those qualities are also useful for the technical management of networks, systems and software, such as those that compose service oriented architectures. Models can provide a set of well-defined abstractions over the distributed heterogeneous service infrastructure that enable its automated management. We propose to use the managed system as a source of dynamically generated runtime models, and decompose management processes into a composition of model transformations. We have created an autonomic service deployment and configuration architecture that obtains, analyzes, and transforms system models to apply the required actions, while being oblivious to the low-level details. An instrumentation layer automatically builds these models and interprets the planned management actions to the system. We illustrate these concepts with a distributed service update operation.
Resumo:
Runtime management of distributed information systems is a complex and costly activity. One of the main challenges that must be addressed is obtaining a complete and updated view of all the managed runtime resources. This article presents a monitoring architecture for heterogeneous and distributed information systems. It is composed of two elements: an information model and an agent infrastructure. The model negates the complexity and variability of these systems and enables the abstraction over non-relevant details. The infrastructure uses this information model to monitor and manage the modeled environment, performing and detecting changes in execution time. The agents infrastructure is further detailed and its components and the relationships between them are explained. Moreover, the proposal is validated through a set of agents that instrument the JEE Glassfish application server, paying special attention to support distributed configuration scenarios.
Resumo:
SRAM-based FPGAs are sensitive to radiation effects. Soft errors can appear and accumulate, potentially defeating mitigation strategies deployed at the Application Layer. Therefore, Configuration Memory scrubbing is required to improve radiation tolerance of such FPGAs in space applications. Virtex FPGAs allow runtime scrubbing by means of dynamic partial reconfiguration. Even with scrubbing, intra-FPGA TMR systems are subjected to common-mode errors affecting more than one design domain. This is solved in inter-FPGA TMR systems at the expense of a higher cost, power and mass. In this context, a self-reference scrubber for device-level TMR system based on Xilinx Virtex FPGAs is presented. This scrubber allows for a fast SEU/MBU detection and correction by peer frame comparison without needing to access a golden configuration memory
Resumo:
Traditional schemes for abstract interpretation-based global analysis of logic programs generally focus on obtaining procedure argument mode and type information. Variable sharing information is often given only the attention needed to preserve the correctness of the analysis. However, such sharing information can be very useful. In particular, it can be used for predicting runtime goal independence, which can eliminate costly run-time checks in and-parallel execution. In this paper, a new algorithm for doing abstract interpretation in logic programs is described which concentrates on inferring the dependencies of the terms bound to program variables with increased precisión and at all points in the execution of the program, rather than just at a procedure level. Algorithms are presented for computing abstract entry and success substitutions which extensively keep track of variable aliasing and term dependence information. In addition, a new, abstract domain independent ñxpoint algorithm is presented and described in detail. The algorithms are illustrated with examples. Finally, results from an implementation of the abstract interpreter are presented.
Resumo:
We have designed and implemented a framework that unifies unit testing and run-time verification (as well as static verification and static debugging). A key contribution of our approach is that a unified assertion language is used for all of these tasks. We first propose methods for compiling runtime checks for (parts of) assertions which cannot be verified at compile-time via program transformation. This transformation allows checking preconditions and postconditions, including conditional postconditions, properties at arbitrary program points, and certain computational properties. The implemented transformation includes several optimizations to reduce run-time overhead. We also propose a minimal addition to the assertion language which allows defining unit tests to be run in order to detect possible violations of the (partial) specifications expressed by the assertions. This language can express for example the input data for performing the unit tests or the number of times that the unit tests should be repeated. We have implemented the framework within the Ciao/CiaoPP system and effectively applied it to the verification of ISO-prolog compliance and to the detection of different types of bugs in the Ciao system source code. Several experimental results are presented that ¡Ilústrate different trade-offs among program size, running time, or levéis of verbosity of the messages shown to the user.
Resumo:
Memory analysis techniques have become sophisticated enough to model, with a high degree of accuracy, the manipulation of simple memory structures (finite structures, single/double linked lists and trees). However, modern programming languages provide extensive library support including a wide range of generic collection objects that make use of complex internal data structures. While these data structures ensure that the collections are efficient, often these representations cannot be effectively modeled by existing methods (either due to excessive analysis runtime or due to the inability to represent the required information). This paper presents a method to represent collections using an abstraction of their semantics. The construction of the abstract semantics for the collection objects is done in a manner that allows individual elements in the collections to be identified. Our construction also supports iterators over the collections and is able to model the position of the iterators with respect to the elements in the collection. By ordering the contents of the collection based on the iterator position, the model can represent a notion of progress when iteratively manipulating the contents of a collection. These features allow strong updates to the individual elements in the collection as well as strong updates over the collections themselves.
Resumo:
It is generally recognized that information about the runtime cost of computations can be useful for a variety of applications, including program transformation, granularity control during parallel execution, and query optimization in deductive databases. Most of the work to date on compile-time cost estimation of logic programs has focused on the estimation of upper bounds on costs. However, in many applications, such as parallel implementations on distributed-memory machines, one would prefer to work with lower bounds instead. The problem with estimating lower bounds is that in general, it is necessary to account for the possibility of failure of head unification, leading to a trivial lower bound of 0. In this paper, we show how, given type and mode information about procedures in a logic program, it is possible to (semi-automatically) derive nontrivial lower bounds on their computational costs. We also discuss the cost analysis for the special and frequent case of divide-and-conquer programs and show how —as a pragmatic short-term solution —it may be possible to obtain useful results simply by identifying and treating divide-and-conquer programs specially.
Resumo:
We provide a method whereby, given mode and (upper approximation) type information, we can detect procedures and goals that can be guaranteed to not fail (i.e., to produce at least one solution or not termínate). The technique is based on an intuitively very simple notion, that of a (set of) tests "covering" the type of a set of variables. We show that the problem of determining a covering is undecidable in general, and give decidability and complexity results for the Herbrand and linear arithmetic constraint systems. We give sound algorithms for determining covering that are precise and efiicient in practice. Based on this information, we show how to identify goals and procedures that can be guaranteed to not fail at runtime. Applications of such non-failure information include programming error detection, program transiormations and parallel execution optimization, avoiding speculative parallelism and estimating lower bounds on the computational costs of goals, which can be used for granularity control. Finally, we report on an implementation of our method and show that better results are obtained than with previously proposed approaches.
Resumo:
While logic programming languages offer a great deal of scope for parallelism, there is usually some overhead associated with the execution of goals in parallel because of the work involved in task creation and scheduling. In practice, therefore, the "granularity" of a goal, i.e. an estimate of the work available under it, should be taken into account when deciding whether or not to execute a goal concurrently as a sepárate task. This paper describes a method for estimating the granularity of a goal at compile time. The runtime overhead associated with our approach is usually quite small, and the performance improvements resulting from the incorporation of grainsize control can be quite good. This is shown by means of experimental results.
Resumo:
The advantages of tabled evaluation regarding program termination and reduction of complexity are well known —as are the significant implementation, portability, and maintenance efforts that some proposals (especially those based on suspensión) require. This implementation effort is reduced by program transformation-based continuation cali techniques, at some eñrciency cost. However, the traditional formulation of this proposal by Ramesh and Cheng limits the interleaving of tabled and non-tabled predicates and thus cannot be used as-is for arbitrary programs. In this paper we present a complete translation for the continuation cali technique which, using the runtime support needed for the traditional proposal, solves these problems and makes it possible to execute arbitrary tabled programs. We present performance results which show that CCall offers a useful tradeoff that can be competitive with state-of-the-art implementations.
Resumo:
Visualization of program executions has been found useful in applications which include education and debugging. However, traditional visualization techniques often fall short of expectations or are altogether inadequate for new programming paradigms, such as Constraint Logic Programming (CLP), whose declarative and operational semantics differ in some crucial ways from those of other paradigms. In particular, traditional ideas regarding flow control and the behavior of data often cannot be lifted in a straightforward way to (C)LP from other families of programming languages. In this paper we discuss techniques for visualizing program execution and data evolution in CLP. We briefly review some previously proposed visualization paradigms, and also propose a number of (to our knowledge) novel ones. The graphical representations have been chosen based on the perceived needs of a programmer trying to analyze the behavior and characteristics of an execution. In particular, we concéntrate on the representation of the program execution behavior (control), the runtime valúes of the variables, and the runtime constraints. Given our interest in visualizing large executions, we also pay attention to abstraction techniques, Le., techniques which are intended to help in reducing the complexity of the visual information.
Resumo:
Several activities in service oriented computing, such as automatic composition, monitoring, and adaptation, can benefit from knowing properties of a given service composition before executing them. Among these properties we will focus on those related to execution cost and resource usage, in a wide sense, as they can be linked to QoS characteristics. In order to attain more accuracy, we formulate execution costs / resource usage as functions on input data (or appropriate abstractions thereof) and show how these functions can be used to make better, more informed decisions when performing composition, adaptation, and proactive monitoring. We present an approach to, on one hand, synthesizing these functions in an automatic fashion from the definition of the different orchestrations taking part in a system and, on the other hand, to effectively using them to reduce the overall costs of non-trivial service-based systems featuring sensitivity to data and possibility of failure. We validate our approach by means of simulations of scenarios needing runtime selection of services and adaptation due to service failure. A number of rebinding strategies, including the use of cost functions, are compared.
Resumo:
We present new algorithms which perform automatic parallelization via source-to-source transformations. The objective is to exploit goal-level, unrestricted independent andparallelism. The proposed algorithms use as targets new parallel execution primitives which are simpler and more flexible than the well-known &/2 parallel operator, which makes it possible to generate better parallel expressions by exposing more potential parallelism among the literals of a clause than is possible with &/2. The main differences between the algorithms stem from whether the order of the solutions obtained is preserved or not, and on the use of determinacy information. We briefly describe the environment where the algorithms have been implemented and the runtime platform in which the parallelized programs are executed. We also report on an evaluation of an implementation of our approach. We compare the performance obtained to that of previous annotation algorithms and show that relevant improvements can be obtained.
Resumo:
The advantages of tabled evaluation regarding program termination and reduction of complexity are well known —as are the significant implementation, portability, and maintenance efforts that some proposals (especially those based on suspension) require. This implementation effort is reduced by program transformation-based continuation call techniques, at some efficiency cost. However, the traditional formulation of this proposal by Ramesh and Cheng limits the interleaving of tabled and non-tabled predicates and thus cannot be used as-is for arbitrary programs. In this paper we present a complete translation for the continuation call technique which, using the runtime support needed for the traditional proposal, solves these problems and makes it possible to execute arbitrary tabled programs. We present performance results which show that CCall offers a useful tradeoff that can be competitive with state-of-the-art implementations.
Resumo:
We have designed and implemented a framework that unifies unit testing and run-time verification (as well as static verification and static debugging). A key contribution of our approach is that a unified assertion language is used for all of these tasks. We first propose methods for compiling runtime checks for (parts of) assertions which cannot be verified at compile-time via program transformation. This transformation allows checking preconditions and postconditions, including conditional postconditions, properties at arbitrary program points, and certain computational properties. The implemented transformation includes several optimizations to reduce run-time overhead. We also propose a minimal addition to the assertion language which allows defining unit tests to be run in order to detect possible violations of the (partial) specifications expressed by the assertions. This language can express for example the input data for performing the unit tests or the number of times that the unit tests should be repeated. We have implemented the framework within the Ciao/CiaoPP system and effectively applied it to the verification of ISO-prolog compliance and to the detection of different types of bugs in the Ciao system source code. Several experimental results are presented that illustrate different trade-offs among program size, running time, or levels of verbosity of the messages shown to the user.