895 resultados para Risk Analysis, Security Models, Counter Measures, Threat Networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a class of models of correlated random networks in which vertices are characterized by hidden variables controlling the establishment of edges between pairs of vertices. We find analytical expressions for the main topological properties of these models as a function of the distribution of hidden variables and the probability of connecting vertices. The expressions obtained are checked by means of numerical simulations in a particular example. The general model is extended to describe a practical algorithm to generate random networks with an a priori specified correlation structure. We also present an extension of the class, to map nonequilibrium growing networks to networks with hidden variables that represent the time at which each vertex was introduced in the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the existence of free software and pedagogical guides, the use of data envelopment analysis (DEA) has been further democratized in recent years. Nowadays, it is quite usual for practitioners and decision makers with no or little knowledge in operational research to run themselves their own efficiency analysis. Within DEA, several alternative models allow for an environment adjustment. Five alternative models, each of them easily accessible to and achievable by practitioners and decision makers, are performed using the empirical case of the 90 primary schools of the State of Geneva, Switzerland. As the State of Geneva practices an upstream positive discrimination policy towards schools, this empirical case is particularly appropriate for an environment adjustment. The alternative of the majority of DEA models deliver divergent results. It is a matter of concern for applied researchers and a matter of confusion for practitioners and decision makers. From a political standpoint, these diverging results could lead to potentially opposite decisions. Grâce à l'existence de logiciels en libre accès et de guides pédagogiques, la méthode data envelopment analysis (DEA) s'est démocratisée ces dernières années. Aujourd'hui, il n'est pas rare que les décideurs avec peu ou pas de connaissances en recherche opérationnelle réalisent eux-mêmes leur propre analyse d'efficience. A l'intérieur de la méthode DEA, plusieurs modèles permettent de tenir compte des conditions plus ou moins favorables de l'environnement. Cinq de ces modèles, facilement accessibles et applicables par les décideurs, sont utilisés pour mesurer l'efficience des 90 écoles primaires du canton de Genève, Suisse. Le canton de Genève pratiquant une politique de discrimination positive envers les écoles défavorisées, ce cas pratique est particulièrement adapté pour un ajustement à l'environnement. La majorité des modèles DEA génèrent des résultats divergents. Ce constat est préoccupant pour les chercheurs appliqués et perturbant pour les décideurs. D'un point de vue politique, ces résultats divergents conduisent à des prises de décision différentes selon le modèle sur lequel elles sont fondées.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Manufactured nanoparticles are introduced into industrial processes, but they are suspected to cause similar negative health effects as ambient particles. The poor knowledge about the scale of this introduction did not allow global risk analysis so far. In 2006 a targeted telephone survey among Swiss companies (1) showed the usage of nanoparticles in a few selected companies but did not provide data to extrapolate on the totality of the Swiss workforce. To gain this kind of information a layered representative questionnaire survey among 1'626 Swiss companies was conducted in 2007. Data was collected about the number of potentially exposed persons in the companies and their protection strategy. The response rate was 58.3%. An expected number of 586 companies (95%−confidence interval 145 to 1'027) was shown by this study to use nanoparticles in Switzerland. Estimated 1'309 (1'073 to 1'545) workers do their job in the same room as a nanoparticle application. Personal protection was shown to be the predominant type of protection means. Companies starting productions with nanomaterials need to consider incorporating protection measures into the plans. This will not only benefit the workers' health, but will also likely increase the competitiveness of the companies. Technical and organisational protection means are not only more cost−effective on the long term, but are also easier to control. Guidelines may have to be designed specifically for different industrial applications, including fields outside nanotechnology, and adapted to all sizes of companies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Well developed experimental procedures currently exist for retrieving and analyzing particle evidence from hands of individuals suspected of being associated with the discharge of a firearm. Although analytical approaches (e.g. automated Scanning Electron Microscopy with Energy Dispersive X-ray (SEM-EDS) microanalysis) allow the determination of the presence of elements typically found in gunshot residue (GSR) particles, such analyses provide no information about a given particle's actual source. Possible origins for which scientists may need to account for are a primary exposure to the discharge of a firearm or a secondary transfer due to a contaminated environment. In order to approach such sources of uncertainty in the context of evidential assessment, this paper studies the construction and practical implementation of graphical probability models (i.e. Bayesian networks). These can assist forensic scientists in making the issue tractable within a probabilistic perspective. The proposed models focus on likelihood ratio calculations at various levels of detail as well as case pre-assessment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comment about the article “Local sensitivity analysis for compositional data with application to soil texture in hydrologic modelling” writen by L. Loosvelt and co-authors. The present comment is centered in three specific points. The first one is related to the fact that the authors avoid the use of ilr-coordinates. The second one refers to some generalization of sensitivity analysis when input parameters are compositional. The third tries to show that the role of the Dirichlet distribution in the sensitivity analysis is irrelevant

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forensic scientists face increasingly complex inference problems for evaluating likelihood ratios (LRs) for an appropriate pair of propositions. Up to now, scientists and statisticians have derived LR formulae using an algebraic approach. However, this approach reaches its limits when addressing cases with an increasing number of variables and dependence relationships between these variables. In this study, we suggest using a graphical approach, based on the construction of Bayesian networks (BNs). We first construct a BN that captures the problem, and then deduce the expression for calculating the LR from this model to compare it with existing LR formulae. We illustrate this idea by applying it to the evaluation of an activity level LR in the context of the two-trace transfer problem. Our approach allows us to relax assumptions made in previous LR developments, produce a new LR formula for the two-trace transfer problem and generalize this scenario to n traces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angio-oedema (AE) is a known adverse effect of angiotensin converting enzyme inhibitor (ACE-I) therapy. Over the past several decades, evidence of failure to diagnose this important and potentially fatal reaction is commonly found in the literature. Because this reaction is often seen first in the primary care setting, a review was undertaken to analyse and document the keys to both diagnostic criteria as well as to investigate potential risk factors for ACE-I AE occurrence. A general review of published literature was conducted through Medline, EMBASE, and the Cochrane Database, targeting ACE-I-related AE pathomechanism, diagnosis, epidemiology, risk factors, and clinical decision making and treatment. The incidence and severity of AE appears to be on the rise and there is evidence of considerable delay in diagnosis contributing to significant morbidity and mortality for patients. The mechanism of AE due to ACE-I drugs is not fully understood, but some genomic and metabolomic information has been correlated. Additional epidemiologic data and clinical treatment outcome predictors have been evaluated, creating a basis for future work on the development of clinical prediction tools to aid in risk identification and diagnostic differentiation. Accurate recognition of AE by the primary care provider is essential to limit the rising morbidity associated with ACE-I treatment-related AE. Research findings on the phenotypic indicators relevant to this group of patients as well as basic research into the pathomechanism of AE are available, and should be used in the construction of better risk analysis and clinical diagnostic tools for ACE-I AE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Useissa suomalaisissa rakennus- tai suunnitteluyrityksissä on selkeät tavoitteet ja odotukset liiketoiminnan kasvulle. Kasvun mahdollisuudet kotimarkkinoilla ovat rajalliset. Liiketoiminnan kasvua on haettava kotimarkkinoiden ulkopuolelta.Liiketoiminnan kasvua haettaessa alan yritykset ovat nopeasti kansainvälistyneet ja etabloituneet lähialueille. Erityisesti etabloitumista on tapahtunut Baltiaan, Viroon. Heräte tämän työn tekemiseen syntyi case-yrityksentoimenpiteistä kansainväistymisessä ja etabloitumisen aiheuttamasta oletettua suuremmasta kustannusten kehittymisestä. Tutkimuksella ja toimenpiteillä tuetaan etabloitumiskehitystä ja parannetaan liiketoimintaprojektin kustannustehokkuutta. Tutkimuksen tavoitteena oli case-yrityksen toimitusprosessin kuvaaminen, suositeltavan toimitusmallin rakentaminen liiketoimintaprojektille ja kohdemaan riskien kuvaaminen projektiriskikartalle. Kansainvälisen projektiliiketoiminnan erityispiirteitä ovat toimintaympäristön ja asiakkaiden erilaisuus, erilaiset pelisäännöt ja tavat toimia, erilainen kulttuuri ja arvot, tuntematon markkinoiden kysyntä- ja tarjontatilanne. Kansainvälisessä projektiliiketoiminnassa joudumme sopeutumaan ja sopeuttamaan totuttua toimintaamme toisenlaisiin olosuhteisiin. Toisenlaisista olosuhteista johtuen kotimarkkinoille ja kotimaisiin asiakastoimituksiin laadittuun toimintajärjestelmään kuvattu prosessimalli ei sellaisenaan ole toimiva. Samanaikaisesti riskikartta muodostuu kohdemaasta johtuen hyvin erilaiseksi. Tutkimuksen lähtökohta oli toisenlaisesta markkinasta, valituista toimitusprojekteista ja kokemuksesta oppiminen. Tutkimuksen tuloksena rakentui liiketoimintaprojektimalli, joka on selkeästivaiheistettu, roolitettu ja vastuutettu. Lisäksi toisenlaisista markkinoista ja projektimallista johtuen kuvattiin kohdemaan projektiriskikartta. Tutkimuksessa kuvattu liiketoimintaprojektimalli ja kohdemaan mukainen projektiriskikartta toimivat yrityksen seuraavana kehitysaskeleena toiminnan vakauttamisessa. Henkilöstön roolia ja kumppanuuksia tulee kuitenkin jatkossa tarkastella. Työn tuloksena syntyi yksittäisen yrityksen liiketoimintaprojektimallin projektiosien ja roolien kuvaus sekä riskikartta. Työn tuloksen arvioidaan selkeyttävän yrityksen liiketoimintaa ja osaltaan varmistavan yrityksen kansainvälisen liiketoiminnan tavoitteiden saavuttamista.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within Data Envelopment Analysis, several alternative models allow for an environmental adjustment. The majority of them deliver divergent results. Decision makers face the difficult task of selecting the most suitable model. This study is performed to overcome this difficulty. By doing so, it fills a research gap. First, a two-step web-based survey is conducted. It aims (1) to identify the selection criteria, (2) to prioritize and weight the selection criteria with respect to the goal of selecting the most suitable model and (3) to collect the preferences about which model is preferable to fulfil each selection criterion. Second, Analytic Hierarchy Process is used to quantify the preferences expressed in the survey. Results show that the understandability, the applicability and the acceptability of the alternative models are valid selection criteria. The selection of the most suitable model depends on the preferences of the decision makers with regards to these criteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Treatment strategies for mental disorders may vary according to illness stage. However no data currently exist to guide treatment in first episode psychotic mania. The aim of this study was to compare the safety and efficacy profile of chlorpromazine and olanzapine, as add-on to lithium, in patients with a first episode of psychotic mania, expecting better safety profile and adherence to olanzapine but similar efficacy for both treatments. METHODS: Data from 83 patients were collected in an 8-week randomised controlled trial on clinical variables, side effects, vital signs, and weight. Analyses of treatment differences over time were based on intent-to-treat principles. Kaplan-Meier estimated survival curves were used to analyse time-to-event data and mixed effects models repeated measures analysis of variance were used to determine treatment group differences over time on safety and efficacy measures. RESULTS: Ethics committee approval to delay informed consent procedure until recovery from the acute episode allowed the inclusion of 83 patients highly representative of those treated in the public sector. Contrary to our hypotheses, safety profile of both medications was similar. A signal for higher rate (P=.032) and earlier occurrence (P=.043) of mania remission was observed in the olanzapine group which did not survive correction for multiple comparisons. CONCLUSIONS: Olanzapine and chlorpromazine have a similar safety profile in a uniquely representative cohort of patients with first episode psychotic mania. The possibility for a greater impact of olanzapine on manic symptoms leading to earlier remission of the episode needs exploration in a large sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raportointi liittyy kiinteänä osana yrityksen jokapäiväiseen toimintaan. Raportoinnin sisältö ja muoto vaihtelevat organisaatiotasosta riippuen päivittäisen toiminnan tarkkailusta kuukausittaiseen tulosraportointiin. Raportointi voidaan toteuttaa operatiivisten järjestelmien kautta tai nykyisin entistä suositumpana vaihtoehtona on keskitetty raportointi. Uuden raportointijärjestelmän hankintaprojekti on usein koko yritystä koskeva investointi. Jos raportointijärjestelmällä on tarkoitus raportoida sekä operatiivista toimintaa että johdon tarpeita, on sen mukauduttava moneen tarkoitukseen. Aluksi on tärkeää määritellä tietotarpeet ja tavoitteet projektille unohtamatta riskien- ja projektinhallintaa sekä investointilaskelmia. Jos raportoidaan myös yrityksen ulkopuolelle, tulee ottaa huomioon mahdolliset säädökset sekä tietoturvallisuusnäkökulmat. Myös yrityksen toimintatapoja ja – prosesseja on syytä tarkastella kriittisesti ennen järjestelmähankintaa jolloin voidaan havaita uusia raportointikohteita, tai toimintatapoja voidaan uudelleen organisoida parhaan toimintatavan saavuttamiseksi. Raportointijärjestelmää hankittaessa turvaudutaan usein ulkopuoliseen ohjelmistotoimittajaan, joka integroi ja räätälöi järjestelmän yrityksen omiin tarpeisiin soveltuvaksi. Raportointijärjestelmän hankintaprojekti ei lopu käyttöönottoon vaan projektin alussa on huomioitava myös järjestelmän huomattavasti pisin elinkaari eli käyttö ja ylläpito. Raportointi-, kuten ei moni muukaan tietojärjestelmä, ole ikinä valmis sillä tarpeet ja toimintatavat muuttuvat ajan kuluessa ja käyttäjien tietoisuus lisääntyy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Pretreatment measurements of systemic inflammatory response, including the Glasgow prognostic score (GPS), the neutrophil-to-lymphocyte ratio (NLR), the monocyte-to-lymphocyte ratio (MLR), the platelet-to-lymphocyte ratio (PLR) and the prognostic nutritional index (PNI) have been recognized as prognostic factors in clear cell renal cell carcinoma (CCRCC), but there is at present no study that compared these markers. METHODS: We evaluated the pretreatment GPS, NLR, MLR, PLR and PNI in 430 patients, who underwent surgery for clinically localized CCRCC (pT1-3N0M0). Associations with disease-free survival were assessed with Cox models. Discrimination was measured with the C-index, and a decision curve analysis was used to evaluate the clinical net benefit. RESULTS: On multivariable analyses, all measures of systemic inflammatory response were significant prognostic factors. The increase in discrimination compared with the stage, size, grade and necrosis (SSIGN) score alone was 5.8 % for the GPS, 1.1-1.4 % for the NLR, 2.9-3.4 % for the MLR, 2.0-3.3 % for the PLR and 1.4-3.0 % for the PNI. On the simultaneous multivariable analysis of all candidate measures, the final multivariable model contained the SSIGN score (HR 1.40, P < 0.001), the GPS (HR 2.32, P < 0.001) and the MLR (HR 5.78, P = 0.003) as significant variables. Adding both the GPS and the MLR increased the discrimination of the SSIGN score by 6.2 % and improved the clinical net benefit. CONCLUSIONS: In patients with clinically localized CCRCC, the GPS and the MLR appear to be the most relevant prognostic measures of systemic inflammatory response. They may be used as an adjunct for patient counseling, tailoring management and clinical trial design.